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Chapter 2:  

Flash Distillation 
 

 Flash distillation can be considered one of 

the simplest separation processes 

 

 In this process, a pressurised feed stream, 

which is in liquid phase, is passed through a 

throttling valve/nozzle or an expansion valve/ 

nozzle (sometimes, the feed stream may be 

passed through a heater before being passed 

through the valve/nozzle, in order to pre-heat 

the feed) connected to a tank or drum, which is 

called a “flash” tank or drum 
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 After being passed through the valve/nozzle, 

the feed enters the tank/drum, whose pressure 

is low; thus, there is a substantial pressure drop 

in the feed stream, causing the feed to partially 

vaporise 

 

 The fraction that becomes vapour goes up to 

and is taken off at the top of the tank/drum 

 

 The remaining liquid part goes down to and 

is withdrawn at the bottom of the tank/drum 

 

 It is noteworthy that, although the illustra-

tion (Figure 2.1) of the flash tank is in vertical 

direction (แนวต้ัง), flash tanks/drums in horizon-

tal direction (แนวนอน) are also common 
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Figure 2.1:  A flash distillation system 
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 The overall material (or mole) balance for 

the system within the dashed boundary can be 

written as follows 

       F L V= +     (2.1) 

 

 Species balance (for species i) can also be 

performed as follows 

       
i i i

z F x L yV= +    (2.2) 

 

 The energy balance for this system is 

     
FlashF L V

Fh Q Lh Vh+ = +   (2.3) 

 

 Commonly, 
Flash

Q  = 0, or nearly 0, as the 

flash distillation is usually operated adiabatically 
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 Thus, Eq. 2.3 can be reduced to 

       
F L V

Fh Lh Vh= +    (2.4) 

 

 To determine the amount of 
H

Q  (or to deter-

mine the size of the heater), an energy balance 

around the heater is performed as follows 

       
1 H F

Fh Q Fh+ =    (2.5) 

 

 It should be noted that, if the feed contains 

only 2 components (i.e. the feed is a binary 

mixture), it results in the following facts: 

 Before being fed into the tank, the feed 

contains only one phase (i.e. liquid phase); 

thus the degree of freedom is 

2

2 1 2

F C P= - +
= - +
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3F =  

[note that F = degree of freedom, C = 

number (#) of species, and P = number 

(#) of phases] 

 After being fed into the tank, the feed is 

divided into 2 phases (i.e. liquid and va-

pour phases), which results in the degree 

of freedom of 

2

2 2 2

F C P= - +
= - +

 

2F =  
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 This means that 

 before the feed is being fed into the tank, 

it requires 3 variables (e.g., z, T, and P) 

to identify other properties of the system 

(e.g., h, s) 

 after the feed is passed into the tank, it 

requires only 2 variables (e.g., 
i

x  and 
drum

P  

or 
i

y  and 
drum

T ) to obtain exact values of 

other properties 
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2.1 Equilibrium data 

 

 In principle, equilibrium data of liquid and 

vapour (generally called vapour-liquid equili-

brium: VLE) can be obtained experimentally 
 

 Consider a chamber containing liquid and 

vapour of a mixture (i.e. there are more than 

one species) at specified temperature ( )T  and 

pressure ( )P  where both phases are allowed to 

be settled, meaning that the liquid and vapour 

phases are in equilibrium with each other 

(Figure 2.2) 
 

 After the system reaches the equilibrium, 

each of liquid and vapour phases is sampled and 

then analysed for its composition 
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Figure 2.2:  An example of vapour-liquid equili-

brium (VLE) 
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 Table 2.1 illustrates the equilibrium data for 

various temperatures of the system containing 

ethanol ( )EtOH: E  and water ( )W  at the pres-

sure of 101.3 kPa (or 1 atm) 

 

 Note that, as this is a binary mixture, at any 

specified temperature (or pressure), we obtain 

the facts that 

      1
E W

x x= -  

and     1
E W

y y= -  
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Table 2.1:  VLE data for an EtOH-water binary 

mixture at 1 atm 

T (oC) xE xW yE yW 

100 0 1.0000 0 1.0000 

95.5 0.0190 0.9810 0.17 0.8300 

89.0 0.0721 0.9279 0.3891 0.6109 

86.7 0.0966 0.9034 0.4375 0.5625 

85.3 0.1238 0.8762 0.4704 0.5296 

84.1 0.1661 0.8339 0.5089 0.4911 

82.7 0.2337 0.7663 0.5445 0.4555 

82.3 0.2608 0.7392 0.558 0.4420 

81.5 0.3273 0.6727 0.5826 0.4174 

80.7 0.3965 0.6035 0.6122 0.3878 

79.7 0.5198 0.4802 0.6599 0.3401 

79.3 0.5732 0.4268 0.6841 0.3159 

78.7 0.6763 0.3237 0.7385 0.2615 

78.4 0.7472 0.2528 0.7815 0.2185 

78.2 0.8943 0.1057 0.8943 0.1057 

78.3 1.0000 0 1.0000 0 
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 The VLE data in Table 2.1 can also be pre-

sented graphically as 

 a y-x diagram (McCabe-Thiele diagram) 

(Figure 2.3) 

 a Txy diagram (temperature-composition 

diagram) (Figure 2.4) 

 an enthalpy-composition diagram 

 

 Note that, if the experiment is carried out in 

a constant temperature mode (where the pres-

sure of the system is varied), a Pxy diagram is 

obtained (instead of a Txy diagram) 
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Figure 2.3:  A y-x diagram for the EtOH-water 

binary system 

(A McCabe-Thiele diagram for the EtOH-water 

binary mixture) 
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Figure 2.4:  A Txy diagram for EtOH-water 

binary mixture 
 

 Note that, in Figure 2.4, 
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 a dashed line ( )T y-  is a saturated 
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2.2 Binary Flash Distillation 

 

 Let’s consider the flash distillation system 

(see Figure 2.1 on Page 3); the material balances 

of the system within the dashed boundary can 

be performed as follows 

 

 Overall balance 

       F L V= +     (2.1) 

 

 Species balance 

     
i i i

z F x L yV= +    (2.2) 

 

 Re-arranging Eq. 2.2 for 
i

y  gives 

      
i i i

L F
y x z

V V
=- +    (2.6) 
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 Let’s define 

 
V

f
F

º : the fraction of the feed that  

   vaporises 

 
L

q
F

º : the fraction of the feed that  

    remains liquid 

 

 Re-arranging Eq. 2.1 yields 

       L F V= -     (2.1a) 

 

 Thus, the term 
L

V
 in Eq. 2.6 can be re-writ-

ten, by combining with Eq. 2.1a, as 

1
V

L F V F
V V V

F

--
= =  
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1L f

V f

-
=     (2.7) 

 

 Substituting Eq. 2.7 into Eq. 2.6: 

      
i i i

L F
y x z

V V
=- +    (2.6) 

and noting that the term 
F

V
 is, in fact, 

1

f
 yields 

     
1 i

i i

zf
y x

f f

-
=- +    (2.8) 

 

 Alternatively, re-arranging Eq. 2.1 yields 

       V F L= -     (2.1b) 
 

 The term 
L

V
 in Eq. 2.6 can be also re-written 

as (this time, by combining with Eq. 2.1b) 

1

L
L L F
V F L L

F

= =
-

-
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1

L q

V q
=

-
    (2.9) 

 

 Additionally, the term 
F

V
 in Eq. 2.6 can be 

re-written as (once again, by combining with 

Eq. 2.1b) 

1

1

F F

V F L L

F

= =
-

-
 

 

        
1

1

F

V q
=

-
    (2.10) 

 

 Substituting Eqs. 2.9 & 2.10 into Eq. 2.6 

results in 

     
1

1 1i i i

q
y x z

q q

æ ö÷ç= - + ÷ç ÷ç ÷- -è ø
  (2.11) 
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 Note that Eqs. 2.6, 2.8, and 2.11 are, in fact, 

equivalent to one another, and they are the 

“operating equations” for the flash tank, in 

which 

 the slopes of Eqs. 2.6, 2.8, and 2.11 are 

L

V
- , 

1 f

f

-
- , and 

1

q

q
-

-
, respectively 

 the Y-intercepts of Eqs. 2.6, 2.8, and 

2.11 are  
i

F
z

V
, i

z

f
, and 

1

1 i
z

q

æ ö÷ç ÷ç ÷ç ÷-è ø
, respect-

ively 
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 The intersection of the equilibrium curve [see 

the y-x diagram (Figure 2.3) on Page 13] and 

the operating line is the solution (answer) of the 

material balances (this plot is called “McCabe-

Thiele diagram”) for the flash distillation, as 

the intersection of the equilibrium line (curve) 

and the operating line is the point where the 

system (i.e. the flash tank) reaches the equili-

brium 

 

 Note also that when 
i

y  = 
i

x  (or 
i

x  = 
i

y ), 

Eq. 2.6: 

      
i i i

L F
y x z

V V
=- +    (2.6) 

becomes 

      
i i i

L F
y y z

V V
=- +  



 21

which can be re-arranged to 

1
i i

L F
y z

V V

æ ö÷ç + =÷ç ÷ç ÷è ø
 

 

       
i i

V L F
y z

V V

æ ö+ ÷ç =÷ç ÷ç ÷è ø
   (2.12) 

 

 However, since, from Eq. 2.1, F L V= + , 

Eq. 2.12 can thus be re-written as 

       
i i

F F
y z

V V
=     (2.13) 

 

 Therefore, 
i i i

x y z= =  

 

 This means (or implies) that the intersection 

of the operating line and the 
i i

y x=  line is, in 

fact, the feed composition 
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 Consider the McCabe-Thiele diagram of the 

EtOH-water system for the case where V f
F

=  

2

3
=  and 

EtOH
0.40z =  

 

 The slope of the operating line is 1 f

f

-
- = 

2
1 13

2 2

3

-
- =- , and the Y-intercept is 0.40

2

3

i
z

f
=

 

0.60=  

 

 Thus, the solution to this case is as illustrated 

in Figure 2.5 

 



 23

 

Figure 2.5:  The graphical solution for a flash 

distillation 

 

 Substituting Eq. 2.1a: 

        L F V= -     (2.1a) 

into Eq. 2.2: 

     
i i i
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0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

xEtOH

y
E

tO
H

Solution (answer) 

  xE = 0.17; yE = 0.53 

xE = yE = zE = 0.40 

Operating line 

Equilibrium curve 

y = x line 



 24

i i i i
z F x F xV yV= - +  

( ) ( )
i i i i

i i i i

z F x F xV yV

F z x V y x

- =- +

- = -
 

 

       
( )
( )

i i

i i

z xV
f

F y x

-
= =

-
   (2.14) 

 

 Performing a similar derivation (try doing it 

yourself) for 
L

F
 results in 

       
( )
( )

i i

i i

z yL
q

F x y

-
= =

-
   (2.15) 
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 In the case that an analytical solution is 

desired (in stead of the graphical solution—as 

illustrated in Figure 2.5), an equilibrium curve 

must be translated into the form of equation 

 

 For ideal systems (i.e., the gas phase behaves 

as it is an ideal-gas mixture, while the liquid 

phase can be considered as an ideal liquid solu-

tion), the equilibrium data between 
i

x  and 
i

y  can 

be written in the form of “relative volatility:  

a
AB

”, which is defined as 

     
/

/
A A

AB
B B

y x

y x
a =    (2.16) 

 

 For a binary mixture, where 

      1
B A

x x= -  

and      1
B A

y y= -  
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Eq. 2.16 becomes 

      
( ) ( )

/

1 / 1
A A

AB

A A

y x

y x
a =

- -
  (2.17a) 

 

or       
( )
( )
1

1

A A

AB

A A

y x

x y
a

-
=

-
   (2.17b) 

 

 Re-arranging a Raoult’s law: 

       *

i i i
y P x P=     (2.18) 

where 

 P  = total pressure of the system 

 *

i
P  = vapour pressure of species i 

 

results in 

         
*

i i

i

y P

x P
=     (2.19) 
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 Substituting Eq. 2.19 into Eq. 2.16 for species 

A and B yields 

        

*

*

* *

A

A
AB

B B

P
PP

P P

P

a = =    (2.20) 

 

 Eq. 2.20 implies that the value of 
AB

a  can 

be computed from the vapour-pressure data of 

the components (e.g., species A & B) of the 

system 

 

 Writing Eq. 2.17a for species i gives 

     
( ) ( )

/

1 / 1
i i

i i

y x

y x
a =

- -
    (2.17c) 

   (note that Eq. 2.18c is valid only for a  

   binary mixture) 
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 Re-arranging Eq. 2.18c for 
i

y  yields 

      
( )1 1

i
i

i

x
y

x

a

a
=

é ù+ -ê úë û

   (2.21) 

 

 Eq. 2.21 is an equilibrium-curve equation 

 

 To obtain the analytical solution for the 

flash distillation, equate Eq. 2.21 with one of 

the operating-line equation (i.e. Eq. 2.6, 2.8, or 

2.11) 

 

 For example, when equating Eq. 2.21 with 

Eq. 2.8: 

      
1 i

i i

zf
y x

f f

-
=- +    (2.8) 

it results in 
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( )
1

1 1
i i

i

i

x zf
x

f fx

a

a

-
=- +

é ù+ -ê úë û

 

            (2.22) 

 

 Re-arranging Eq. 2.22 yields 

( )( ) ( ) ( )2
1 1 1

1 0
f f z z

x x
f f f f

a
a a

é ù- - -ê ú- + + - - =ê ú
ê úë û

 

            (2.23) 

 

 The answer (solution) of Eq. 2.23 is the ana-

lytical solution of the flash distillation for a 

binary mixture  
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2.3 Multi-component VLE 

 

 From the ChE Thermodynamics II course, 

for the system with more than 2 components, 

the equilibrium data can, more conveniently, be 

presented in the form of the following equation 

(proposed by C.L. DePrieter in 1953): 

        
i i i

y K x=     (2.24) 

 

 For many systems, it is safe—with an accept-

able error—to assume that 

( ),  
i i

K K T P=  
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 For light hydrocarbons, the value of 
i

K  of 

each species can be obtained from the graph 

(called the “K chart” – Figures 2.6 and 2.7) 

prepared by DePriester when the temperature 

and pressure of the system are specified 

 

 Note that each plot/graph of each hydrocar-

bons can be written in the form of equation as 

follows 

1 2 2 3

6 12 2
ln ln

T T P P

T P

a a a a
K a a P

T PT P
= + + + + +  

            (2.25) 

in which the values of 
1T

a , 
2T

a , 
6T

a , 
1P

a , 
2P

a , and 

3P
a  vary from substance to substance, and the 

units of T and P in Eq. 2.25 are oR and psia, 

respectively 
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Figure 2.6: The K chart (low temperature range) 

[from Introduction to Chemical Engineering Thermodynamics (7th ed) 

by J.M. Smith, H.C. Van Ness, and M.M. Abbott] 
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Figure 2.7: The K chart (high temperature range) 

[from Introduction to Chemical Engineering Thermodynamics (7th ed) 

by J.M. Smith, H.C. Van Ness, and M.M. Abbott] 
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 The meaning of 
i

K  on the K chart can be 

described mathematically by the original Raoult’s 

law and the modified Raoult’s law as follows 

 

 Re-arranging 2.24: 

        
i i i

y K x=     (2.24) 

results in 

         i
i

i

y
K

x
=     (2.26) 

 

 Equating Eq. 2.26 with Eq. 2.19: 

         
*

i i

i

y P

x P
=     (2.19) 

yields 

        
*

i
i

P
K

P
=     (2.27) 
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 In the case of non-ideal systems, Raoult’s 

law is modified to 

      *

i i i i
y P x Pg=     (2.28) 

where 
i

g  is an activity coefficient of species i, 

which can be calculated using, e.g., Margules or 

Van Laar equations 

 

 Re-arranging Eq. 2.28 gives 

        
*

i i i

i

y P

x P

g
=     (2.29) 

 

 Once again, equating Eq. 2.29 with Eq. 2.26 

results in 

        
*

i i
i

P
K

P

g
=     (2.30) 
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2.4 Multi-component Flash Distillation 

 

 Let’s start with Eq. 2.2: 

        
i i i

z F x L yV= +    (2.2) 

which is a species-balance equation for the flash 

distillation 

 

 Substituting Eq. 2.24: 

        
i i i

y K x=     (2.24) 

into Eq. 2.2 results in 

      
i i i i

z F x L K xV= +    (2.31) 

 

 Writing L in Eq. 2.31 as F V-  (see Eq. 2.1a 

on Page 16) yields 

     ( )i i i i
z F x F V K xV= - +   (2.32) 
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 Re-arranging Eq. 2.32 for 
i

x  gives 

     
( )1

i
i

i

z F
x

F K V
=

+ -
   (2.33) 

 

 Dividing numerator (เศษ) and denominator 

(ส่วน) of the right hand side (RHS) of Eq. 2.33 

by F  results in 

      

( )1 1

i
i

i

z
x

V
K

F

=
+ -

   (2.34) 

 

 Re-arranging Eq. 2.24: 

        
i i i

y K x=     (2.24) 

once again gives 

        i
i

i

y
x

K
=     (2.35) 
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 Substituting Eq. 2.35 into Eq. 2.34 and re-

arranging the resulting equation yields 

( )1 1

i i

i
i

y z

K V
K

F

=
+ -

 

 

     

( )1 1

i i
i

i

z K
y

V
K

F

=
+ -

   (2.36) 

 

 Since it is required that, at equilibrium, 

1
i

x =å  and 1
i

y =å , we obtain the following 

relationships (by tanking summation to Eqs. 

2.34 and 2.36, respectively): 
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( )
1

1 1

i

i

z

V
K

F

æ ö÷ç ÷ç ÷ç ÷ç =÷ç ÷ç ÷ç ÷+ - ÷ç ÷çè ø

å   (2.37) 

and   

( )
1

1 1

i i

i

z K

V
K

F

æ ö÷ç ÷ç ÷ç ÷ç =÷ç ÷ç ÷ç ÷+ - ÷ç ÷çè ø

å   (2.38) 

 

 To solve for the solution for any multi-com-

ponent (more than 2 components) system, 
V

F
 is 

varied, using a trial & error technique, until 

both Eqs. 2.37 & 2.38 are satisfied 

 

 Unfortunately, however, since these are non-

linear equations, they do not have good conver-

gence properties 
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 Hence, if the first guess of 
V

F
 is not good 

enough (i.e. too far from the real answer), the 

correct solution may not obtained 

 

 To enhance the efficiency of the trial & error 

process, the following technique is suggested 

 

 Since both 
i

xå  and 
i

yå  are equal to 

unity (1), subtracting Eq. 2.37 from Eq. 2.38 

gives 

( ) ( )
0

1 1 1 1

i i i

i i

z K z

V V
K K

F F

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç- =÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷+ - + -÷ ÷ç ç÷ ÷ç çè ø è ø

å å  

            (2.39) 
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 Let’s define the left hand side (LHS) of Eq. 

2.39 as 

( ) ( )1 1 1 1

i i i

i i

z K z
g

V V
K K

F F

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç= -÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷+ - + -÷ ÷ç ç÷ ÷ç çè ø è ø

å å  

which can be re-arranged to 

       
( )

( )

1

1 1

i i

i

K z
g

V
K

F

æ ö÷ç ÷ç - ÷ç ÷ç= ÷ç ÷ç ÷ç ÷+ - ÷ç ÷çè ø

å   (2.40) 

 

 Note that g  is a function of 
V

F
 or 

V
g g

F

æ ö÷ç= ÷ç ÷ç ÷è ø
 

 

 To solve for the solution, it is required that 

that 

      0g =  
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 We can employ a numerical method, such as 

a “Newtonian convergence procedure” to solve 

for the solution as follows 

 

 Let’s define the value of g  for trial k as 
k

g  

and the value of g  for the trial 1k +  as 
1k

g +  

 

 The equation for the Newtonian convergence 

procedure is 

      
1

k
k k

dg V
g g

FV
d

F

+

æ ö÷ç- = D ÷ç ÷çæ ö ÷è ø÷ç ÷ç ÷ç ÷è ø

  (2.41) 

 

 Note that k
dg

V
d

F

æ ö÷ç ÷ç ÷ç ÷è ø

 is the value of the derivative 

of the function for trial k 
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 Re-arranging Eq. 2.41 yields 

      1k k

k

g gV

F dg

V
d

F

+
æ ö -÷çD =÷ç ÷ç ÷è ø

æ ö÷ç ÷ç ÷ç ÷è ø

   (2.42) 

 

 As the ultimate goal is to have the value of 

1
0

k
g + = , Eq. 2.42 becomes 

0
k

k

gV

F dg

V
d

F

æ ö -÷çD =÷ç ÷ç ÷è ø
æ ö÷ç ÷ç ÷ç ÷è ø

 

 

      

( )/

k

k

gV

F dg

d V F

æ ö -÷çD =÷ç ÷ç ÷è ø
   (2.43) 
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 Since 

1k k

V V V

F F F
+

æ ö æ ö æ ö÷ ÷ ÷ç ç çD = -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷è ø è ø è ø
 

Eq. 2.43 can be re-written as 

( )
1

/

k

k k k

gV V V

F F F dg

d V F

+

æ ö æ ö æ ö -÷ ÷ ÷ç ç çD = - =÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç é ù÷ ÷ ÷è ø è ø è ø ê ú
ê ú
ê úë û

 

            (2.44) 

 

 By employing Eq. 2.40, the term 
( )/

k
dg

d V F
 

in Eq. 2.44 can be derived as 

( )

( )

2

2

1

1 1

i ik

i

K zdg

V Vd KF F

-
=-

æ ö é ù÷ç ÷ç ê ú+ -÷ç ÷è ø ê úë û

å  

            (2.45) 
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 Hence, the next guess of 
V

F
, which may ena-

ble 
1

0
k

g + = , and, thus, makes 1
i

x =å  and 

1
i

y =å  can be obtained from the following 

equation: 

   

( )
1

/

k

k k k

gV V

F F dg

d V F

+

æ ö æ ö÷ ÷ç ç= -÷ ÷ç ç÷ ÷ç ç é ù÷ ÷è ø è ø ê ú
ê ú
ê úë û

  (2.46) 

or 

( )

( )

( )

( )

2
1

2

1

1 1

1

1 1

i i

i

k k
i i

i

K z

V
K

V V F
F F K z

V
K

F

+

æ ö÷ç ÷ç - ÷ç ÷ç ÷ç ÷ç ÷ç ÷+ - ÷çæ ö æ ö ÷çè ø÷ ÷ç ç= +÷ ÷ç ç÷ ÷ç ç÷ ÷è ø è ø -

é ù
ê ú+ -ê úë û

å

å
 

            (2.47) 

  



 46

Example  A flash chamber operating at 50 oC 

(122 oF) and 200 kPa (29 psia) is separating 

1,000 kmol/h of feed containing 30 mol% pro-

pane, 10% n-butane, and 15% n-pentane, and 

45% n-hexane. Find the product compositions 

and flow rates 

 

 

 Note that, 1, 2, 3, & 4 = propane, n-butane, 

n-pentane, & n-hexane, respectively 

 

Tdrum = 50 oC (122 oF) 

Pdrum = 200 kPa (29 psia) 
F = 1, 000 kmol/h 

  z1 = 0.30 

  z2 = 0.10 

  z3 = 0.15 

  z4 = 0.45 

V, yi 

L, xi 
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 At T = 50 oC (122 oF) and P = 200 kPa (29 

psia), the value of 
i

K  read from the K chart of 

each species is as follows 

 
1

7.0K =  

 
2

2.4K =  

 
3

0.80K =  

 
4

0.30K =  

 

 Let’s start with 0.1
V

F
= , and the value of 

( )

( )

1

1 1

i i

i

K zV
g

F V
K

F

é ù
ê úæ ö -ê ú÷ç =÷ç ê ú÷ç ÷è ø ê ú+ -ê ú
ë û

å  can be calculated as 

follows 
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( ) ( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )

7.0 1 0.30 2.4 1 0.10
0.1

1 7.0 1 0.1 1 2.4 1 0.1

0.80 1 0.15 0.30 1 0.45

1 0.80 1 0.1 1 0.30 1 0.1

0.1 0.88

g

g

- -
= +

+ - + -

- -
+ +

+ - + -

=

 

which is NOT equal to zero (0) yet 

 

 Employing Eq. 2.45 to calculate the value of 

( )

( )

2

2

1

1 1

i ik

i

K zdg

V Vd KF F

-
=-

æ ö é ù÷ç ÷ç ê ú+ -÷ç ÷è ø ê úë û

å  yields 

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

2 2

2 2

2 2

2 2

7.0 1 0.30 2.4 1 0.10

1 7.0 1 0.1 1 2.4 1 0.1

0.80 1 0.15 0.30 1 0.45

1 0.80 1 0.1 1 0.30 1 0.1

4.63

k

k

dg

V
d

F

dg

V
d

F

ì üï ï- -ï ïï ï+ï ïï ïé ù é ùï ï+ - + -ï ïê ú ê úï ïë û ë û= -í ýæ ö ï ï- -÷ ï ïç ÷ ï ïç ÷ + +ï ïç ÷è ø ï ïé ù é ùï ï+ - + -ï ïê ú ê úë û ë ûï ïî þ

= -
æ ö÷ç ÷ç ÷ç ÷è ø  
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 Then, using Eq. 2.46 (or Eq. 2.47) to com-

pute the value of the next guess of 
V

F
 gives 

( )

( ) ( )

1

1

/

0.88
0.1

4.63

k

k k k

k

gV V

F F dg

d V F

V

F

+

+

æ ö æ ö÷ ÷ç ç= -÷ ÷ç ç÷ ÷ç ç é ù÷ ÷è ø è ø ê ú
ê ú
ê úë û

æ ö÷ç = -÷ç ÷ç ÷ -è ø

 

 

1

0.29
k

V

F
+

æ ö÷ç =÷ç ÷ç ÷è ø
 

 

 Then, repeat the process all over again, until 

we obtain the value of 
V

F
 that makes 0g =  

 

 The corresponding value of 
V

F
 that makes 

0g =  for this Example is found to be 0.51 
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 After obtaining the correct value of 
V

F
, the 

values of 
i

x  and 
i

y  of each species can be calcu-

lated as follows 

 

 The value of 
i

x  can be calculated from Eq. 

2.34, as can be illustrated for propane (C3H8 – 

species 1) as follows 

( )
( )

( )( )

1
1

1

1

1 1

0.30

1 7.0 1 0.51

0.074

z
x

V
K

F

x

=
+ -

=
+ -

=
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 Then, the value of 
i

y  can be computed using 

Eq. 2.24: 

         
i i i

y K x=     (2.24) 

 

 For propane (species 1), 

( )( )1
7.0 0.074 0.518y = =  

 

 Performing the same calculations for other 

species results in 

  
2

0.058x =    
2

0.140y =  

  
3

0.167x =    
3

0.134y =  

  
4

0.700x =    
4

0.210y =  

 

 Since 0.51
V

F
=  and F = 1,000 kmol/h, 

510 kmol/hV = , and 490 kmol/hL =  
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 Thus, the flow rates of each species in the li-

quid and gas phases can be computed as follows 

 Liquid phase ( )i i
l x L= : 

 Propane: ( )( )0.074 490  = 36.26 kmol 

 n-butane: ( )( )0.058 490  = 28.42 kmol 

 n-pentane: ( )( )0.167 490  = 81.83 kmol 

 n-hexane: ( )( )0.700 490  = 343.0 kmol 

 TOTAL     = 489.5 kmol 

 

 Gas phase ( )i i
v yV= : 

 Propane: ( )( )0.518 510  = 264.2 kmol 

 n-butane: ( )( )0.140 510  = 71.40 kmol 

 n-pentane: ( )( )0.134 510  = 68.34 kmol 

 n-hexane: ( )( )0.210 510  = 107.1 kmol 

 TOTAL     = 511.0 kmol 
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 Another approach to solve this Example is as 

already studied from ChE Thermodynamics II; 

the details are as follows 

 

 Substituting Eq. 2.24: 

        
i i i

y K x=     (2.24) 

into the species balance equation (Eq. 2.2): 

       
i i i

z F x L yV= +    (2.2) 

and re-arranging the resulting equation gives 

( )
i i i i

i i

z F x L K xV

x L KV

= +

= +
 

1
i i i

V
z F x L K

L

æ ö÷ç= + ÷ç ÷ç ÷è ø
 

 

       

1

i
i

i

z F
x L

V
K

L

=
æ ö÷ç + ÷ç ÷ç ÷è ø

   (2.48) 
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 For the feed to become liquid, 1
i

x =å  

 

 Thus, 

( )1
1

i
i i

i

z F
x L L x L L

V
K

L

= = = =
æ ö÷ç + ÷ç ÷ç ÷è ø

å å å  

            (2.49) 

 

 Substituting Eq. 2.35: 

        i
i

i

y
x

K
=     (2.35) 

into Eq. 2.2 and re-arranging the resulting equa-

tion yields 

i
i i

i

i i i

i

y
z F L yV

K
y L y KV

K

= +

+
=
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( )
i i i i i

i i

z K F y L y KV

y L KV

= +

= +
 

i i i i

L
z K F yV K

V

æ ö÷ç= + ÷ç ÷ç ÷è ø
 

 

        i i
i

i

z K F
yV

L
K

V

=
æ ö÷ç + ÷ç ÷ç ÷è ø

   (2.50) 

 

 For the feed to become vapour, 1
i

y =å  

 

 Hence, 

( )1 i i
i i

i

z K F
yV V y V V

L
K

V

= = = =
æ ö÷ç + ÷ç ÷ç ÷è ø

å å å  

            (2.51) 
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 To solve for the value of L , the trial & error 

technique must be employed such that the value 

of L  is guessed, and the corresponding value of 

V  is obtained from the fact that V F L= -  

 

 Then, the value of L  is calculated using Eq. 

2.49 

 

 The trial & error process is iterated (ทําซ้ํา ๆ 

กัน) until the guessed value of L  is equal to the 

value of L  computed from Eq. 2.49 

 

 Likewise, to obtain the value of V , the value 

of V  is guessed, and the corresponding value of 

L  is computed from the fact that L F V= -  
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 The value of the guessed V  and the corres-

ponding value of L  are then used to calculate 

the value of V  using Eq. 2.51 

 

 The iteration of the trial & error is performed 

until the guessed value of V  is equal to the calcu-

lated value of V  using Eq. 2.51 

 

 In this Example, both values of V  and L  

must firstly be determined; thus, we can make a 

guess for either L  or V  

 

 Let’s start with the first guess of L as 100 

kmol; hence, the corresponding value of V  is 

1,000 100 900 kmolV F L= - = - =  
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 The value of L  can then be computed using 

Eq. 2.49 as illustrated in the following Table: 

Species zi Ki 
=

æ ö÷ç + ÷ç ÷ç ÷è ø
1

i
i

i

z F
l

V
K

L

 

Propane 0.30 7.0 

( )( )

( )

0.30 1, 000
4.7

900
1 7.0

100

=
é ùæ ö÷çê ú+ ÷ç ÷ê úç ÷è øë û

 

n-Butane 0.10 2.4 4.4 

n-Pentane 0.15 0.80 18.3 

n-Hexane 0.45 0.30 121.6 

∑ = 1.00 L = 149.0 

 

 The guessed value of L  is NOT equal to the 

value of L  calculated using Eq. 2.49; thus, a new 

guess is needed 

 



 59

 The iteration is performed until the guessed 

value of L  is equal to the value of L  computed 

using Eq. 2.49, and the resulting value of L is 

found to be 488.6 kmol (and the corresponding 

value of V  is 1,000 – 488.6 = 511.4 kmol), which 

yields 

Species zi Ki 
=

æ ö÷ç + ÷ç ÷ç ÷è ø
1

i
i

i

z F
l

V
K

L

 

Propane 0.30 7.0 

( )( )

( )

0.30 1, 000
36.0

511.4
1 7.0

488.6

=
é ùæ ö÷çê ú+ ÷ç ÷ê úç ÷è øë û

 

n-Butane 0.10 2.4 28.5 

n-Pentane 0.15 0.80 81.6 

n-Hexane 0.45 0.30 342.5 

∑ = 1.00 L = 488.6 
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 The composition of each species in each phase 

can, thus, be calculated as follows 

Species zi fi = ziF li = i
i

l
x

L
 

Propane 0.30 300 36.0 
36.0

0.074
488.6

=  

n-Butane 0.10 100 28.5 0.058 

n-Pentane 0.15 150 81.6 0.167 

n-Hexane 0.45 450 342.5 0.701 

∑ = 1.00 1,000 488.6 1.001 

 

Species fi = ziF li i
= -

i i
v f l  = i

i

v
y

V
 

Propane 300 36.0 300 – 36.0 = 264.0 
264.0

0.516
511.4

=  

n-Butane 100 28.5 71.5 0.140 

n-Pentane 150 81.6 68.4 0.134 

n-Hexane 450 342.5 107.5 0.210 

∑ = 1,000 488.6 511.4 1.000 
 


