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Chapter 6: 

Approximate Shortcut Methods 

for Multi-component Distillation 
 

6.1 Total Reflux: Fenske Equation 

 

 For a multi-component (i.e. > 1) distillation 

with the total reflux as shown Figure 6.1, the 

equation for vapour-liquid equilibrium (VLE) at 

the re-boiler for any 2 components (e.g., species 

A and B) can be formulated as follows 

        A A
R

B BR R

y x

y x
a

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
   (6.1) 

(note that sub-script R denotes a re-boiler) 
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Figure 6.1:  A distillation column with the total 

reflux 

(from “Separation Process Engineering” by Wankat, 2007) 

 

 Eq. 6.1 is, in fact, the relationship that repre-

sents the relative volatility of species A and B 

( )AB
a  we have learned previously: 

      
/

/
A A

AB
B B

y x

y x
a =    (6.2) 
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 Performing the material balances for species 

A (assuming that species A is the more volatile 

component: MVC) around the re-boiler gives 

, , ,A N A R A R
Lx Vy Bx= +  

or 

     
, , ,A R A N A R

Vy Lx Bx= -   (6.3) 

 

 Doing the same for species B yields 

     
, , ,B R B N B R

Vy Lx Bx= -   (6.4) 

 

 Since this is a total reflux distillation, 

0B =  
which results in the fact that 

V L=  
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 With the above facts, Eq. 6.3 becomes 

, ,

,

,

1

A R A N

A R

A N

Vy Lx

y L
x V

=

= =
 

 

        
, ,A R A N

y x=     (6.5) 

 

 Doing the same for Eq. 6.4 results in 

        
, ,B R B N

y x=     (6.6) 

 

 Eqs 6.5 and 6.6 confirm that the operating 

line for the total reflux distillation is, in fact, the 

y = x line 
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 Combining Eqs 6.5: 

        
, ,A R A N

y x=     (6.5) 

and Eq. 6.6: 

        
, ,B R B N

y x=     (6.6) 

with Eq. 6.1: 

        A A
R

B BR R

y x

y x
a

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
   (6.1) 

gives 

       A A
R

B BN R

x x

x x
a

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
   (6.7) 

 

 Applying Eq. 6.1 to stage N yields the VLE 

equation for stage N as follows 

       A A
N

B BN N

y x

y x
a

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
   (6.8) 
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 Performing material balances for species A 

and B around stage N (in a similar manner as 

per the re-boiler) results in 

       
, , 1A N A N

y x -=     (6.9) 

       
, , 1B N B N

y x -=    (6.10) 

 

 Once again, combining Eqs. 6.9 and 6.10 with 

Eq. 6.8 in a similar way as done for Eqs. 6.5 and 

6.6 with Eq. 6.1 gives 

      
1

A A
N

B BN N

x x

x x
a

-

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
  (6.11) 

 

 Combining Eq. 6.11 with Eq. 6.7 yields 

    
1

A A
N R

B BN R

x x

x x
a a

-

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
  (6.12) 
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 By doing the same for stage 1N - , we obtain 

     
1

2

A A
N N R

B BN R

x x

x x
a a a-

-

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
  (6.13) 

 

 Hence, by performing the similar derivations 

until we reach the top of the distillation (i.e. 

stage 1) with the output of 
,distA

x  and 
,distB

x , we 

obtain the following equation: 

1 2 3 1

dist

...A A
N N R

B B R

x x

x x
a a a a a a-

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 

            (6.14) 

 

 Let’s define 
AB

a  as the geometric-average 

relative volatility, with can be written mathema-

tically as follows 
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( ) min

1

1 2 3 1
... N

AB N N R
a a a a a a a-=  

where 
min

N  is the number of of equilibrium stages 

for the total reflux distillation 

 

 Thus, Eq. 6.14 can be re-written as 

     min

dist

NA A
AB

B B R

x x

x x
a

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
  (6.15) 

 

 Solving for 
min

N  results in 

       

dist

R

min

ln

ln

A

B

A

B

AB

x

x

x

x
N

a

é ùæ ö÷çê ú÷ç ÷ê úç ÷çè øê ú
ê úæ öê ú÷ç ÷çê ú÷ç ÷çê úè øë û=   (6.16) 

 

 Eq. 6.16 can also be written in another form 

as follows 
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dist

R

min

ln

ln

A

B

A

B

AB

Dx

Dx

Bx

Bx
N

a

é ùæ ö÷çê ú÷ç ÷ê úç ÷çè øê ú
ê úæ öê ú÷ç ÷çê ú÷ç ÷çê úè øë û=   (6.17) 

 

 As we have learned from Chapter 5, 

    ( ), dist distA A A
Dx FR Fz=   (6.18) 

(see Eq. 5.6 on Page 8 of Chapter 5) 

and 

      ( ), dist
1

A R A A
Bx FR Fzé ù= -ê úë û

  (6.19) 

(see Eq. 5.10 on Page 10 of Chapter 5) 

 

 Note that 
, ,botA R A

Bx Bxº  
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 We can also write the similar equations as 

per Eqs. 6.18 and 6.19 for species B (try doing it 

yourself) 

 

 Combining Eqs. 6.18 and 6.19 and the corres-

ponding equations for species B with Eq. 6.17, 

and re-arranging the resulting equation gives 

( ) ( )
( ) ( )

dist bot

dist bot

min

ln
1 1

ln

A B

A B

AB

FR FR

FR FR
N

a

ì üï ïï ïï ïí ýé ù é ùï ï- -ï ïê ú ê úï ïë û ë ûî þ=  

            (6.20) 

 

 Note that ( )
botB

FR  is the fractional recovery 

of species B in the bottom product 
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 When there are only 2 components (i.e. a 

binary mixture), Eq. 6.16 can be written as 

follows 

( )
( )

dist

bot

min

/ 1
ln

/ 1

ln

A A

A A

AB

x x

x x
N

a

ì üé ùï ï-ï ïê úë ûï ïí ýé ùï ï-ï ïê úë ûï ïî þ=  

            (6.21) 

 

 Eq. 6.20 can also be written for species C and 

B in the multi-component system (where C is a 

non-key component, but B is a key component) 

as follows 

( ) ( )
( ) ( )

dist bot

dist bot

min

ln
1 1

ln

C B

C B

CB

FR FR

FR FR
N

a

ì üï ïï ïï ïí ýé ù é ùï ï- -ï ïê ú ê úï ïë û ë ûî þ=  

            (6.22) 
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 Solving Eq. 6.22 for ( )
distC

FR  results in 

( )
( )
( )

min

min

dist

bot

bot
1

N

CB
C

B N

CB

B

FR
FR

FR

a

a

=
é ù
ê ú +ê ú
-ê úë û

 

            (6.23) 
 

 The derivations and the resulting equations 

above were proposed by Merrell Fenske, a Chemi-

cal Engineering Professor at the Pennsylvania 

State University (published in Industrial and 

Engineering Chemistry, Vol. 24, under the topic 

of “Fractionation of straight-run Pensylvania 

gasoline” in 1932) 
 

 The following Example illustrates the applica-

tion of the Fenske equation to the multi-compo-

nent distillation with the total reflux 
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Example  An atmospheric distillation column 

with a total condenser and a partial re-boiler is 

used to separate a mixture of 40 mol% benzene, 

30% toluene, and 30% cumene, in which the feed 

is input as a saturated vapour 

 It is required that 95% of toluene be in the 

distillate and that 95% of cumene be in the 

bottom 

 If the CMO is assumed and the reflux is a 

saturated liquid, determine a) the number of 

equilibrium stage for total reflux distillation and 

b) the fractional recovery of benzene in the 

distillate ( )benzene dist
FRé ù

ê úë û
 

 Given the constant volatilities with respect 

to toluene as 
benz-tol

2.25a =  and 
cume-tol

0.21a =  
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 Since the fractional recoveries of toluene (in 

the distillate–95%) and cumene (in the bottom–

95%) are specified, both toluene and cumene are 

the key components 

 

 By considering the relative volatilities of tolu-

ene (= 1.0 – with respect to toluene itself) and 

cumeme (= 0.21 – with respect to toluene), it is 

evident that toluene is more volatile than cumene 

 

 Accordingly, 

 toluene is the light key component (LK) 

 cumene is the heavy key component (HK) 

 

 Therefore, benzene is the non-key component 
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 As the relative volatility of benzene is higher 

than that of toluene, which is the LK, benzene is 

the light non-key component (LNK) 

 

 It is given, in the problem statement, that 

 
toluene

0.30z =  

 
cumene

0.30z =  

 
benzene

0.40z =  

 ( )toluene dist
0.95FR =  

 ( )cumene bot
0.95FR =  

 

 Let’s denote 

 toluene    A (the LK) 

 cumene    B (the HK) 

 benzene    C (the LNK) 
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 Hence, the number of minimum equilibrium 

stages ( )min
N  for the distillation with the total re-

flux can be computed, using Eq. 6.20, as follows 

( ) ( )
( ) ( )

dist bot

dist bot

min

ln
1 1

ln

A B

A B

AB

FR FR

FR FR
N

a

ì üï ïï ïï ïí ýé ù é ùï ï- -ï ïê ú ê úï ïë û ë ûî þ=  

( ) ( )
( ) ( )

dist bot

dist bot

min

ln
1 1

1
ln

A B

A B

BA

FR FR

FR FR
N

a

ì üï ïï ïï ïí ýé ù é ùï ï- -ï ïê ú ê úï ïë û ë ûî þ=
æ ö÷ç ÷ç ÷ç ÷çè ø

 

or 

( ) ( )
( ) ( )

toluene cumenedist bot

toluene cumenedist bot

min

cume-tol

ln
1 1

1
ln

FR FR

FR FR
N

a

ì üï ïï ïï ïí ýé ù é ùï ï- -ï ïê ú ê úï ïë û ë ûî þ=
æ ö÷ç ÷ç ÷ç ÷çè ø

 

            (6.24) 
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 Note that, as 
AB

a  is defined as 

/

/
A A

AB
B B

y x

y x
a =  

by using the same principle, we obtain the fact 

that 

/

/
B B

BA
A A

y x

y x
a =  

 

 Accordingly, 

1
BA

AB

a
a

=  

 

 Substituting corresponding numerical values 

into Eq. 6.24: 
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( ) ( )
( ) ( )

toluene cumenedist bot

toluene cumenedist bot

min

cume-tol

ln
1 1

1
ln

FR FR

FR FR
N

a

ì üï ïï ïï ïí ýé ù é ùï ï- -ï ïê ú ê úï ïë û ë ûî þ=
æ ö÷ç ÷ç ÷ç ÷çè ø

 

yields 

( )( )
( ) ( )

min

0.95 0.95
ln

1 0.95 1 0.95

1
ln

0.21

N

ì üï ïï ïï ïí ýé ù é ùï ï- -ï ïê ú ê úë û ë ûï ïî þ=
æ ö÷ç ÷ç ÷ç ÷è ø

 

min
3.8N =  

 

 Then, Eq. 6.23: 

( )
( )
( )

min

min

dist

bot

bot
1

N

CB
C

B N

CB

B

FR
FR

FR

a

a

=
é ù
ê ú +ê ú
-ê úë û

 

            (6.23) 
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is employed to compute the fractional recovery 

of the LNK (= benzene in this Example) in the 

distillate 

 

 Note that 
CB

a  in this Example is 
benz-cume

a , but 

from the given data, we do NOT have the value 

of 
benz-cume

a  

 

How can we determine this value? 

 

 We are the given the values of 

 benz benz
benz-tol

tol tol

/
2.25

/

y x

y x
a = =    (6.25) 

 cume cume
cume-tol

tol tol

/
0.21

/

y x

y x
a = =   (6.26) 
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 (6.25)/(6.26) gives 

benz benz

benz-tol tol tol benz benz
benz-cume

cume-tol cume cume cume cume

tol tol

/

/ /

/ /

/

y x

y x y x

y x y x

y x

a
a

a
= = =  

            (6.27) 

 

 Substituting corresponding numerical values 

into Eq. 6.27 results in 

benz benz benz-tol
benz-cume

cume cume cume-tol

benz-tol
benz-cume

cume-tol

/

/

y x

y x

a
a

a
a

a
a

= =

=
 

 

benz-tol
benz-cume

cume-tol

2.25
10.7

0.21

a
a

a
= = =  
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 Thus, the fractional recovery of benzene 

( )species C  in the distillate ( )
distC

FR  can be com-

puted, using Eq. 6.23, as follows 

( )
( )
( )

( )
( )

( )
( )
( ) ( )

min

min

min

min

dist

bot

bot

benz-cume

cume bot
benz-cume

cume bot
3.8

3.8

1

1

10.7

0.95
10.7

1 0.95

N

CB
C

B N

CB

B

N

N

FR
FR

FR

FR

FR

a

a

a

a

=
é ù
ê ú +ê ú
-ê úë û

=
é ù
ê ú +ê ú
-ê úë û

=
é ù
ê ú +ê ú-ê úë û

 

 

( ) ( )benzdist dist
0.998

C
FR FR= =  

 

 It is evident that the fractional recovery of 

the LNK in this distillate is close to unity (1.0) 
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6.2 Minimum Reflux: Underwood Equations 

 

 We have just learned how to calculate impor-

tant variables [e.g., 
min

N , ( )
disti

FR ] numerically 

for the case of total reflux using an approximate 

shortcut technique of Fenske (1932) 

 

 Is there such a technique for the case of mi-

nimum reflux? 

 

 For a binary (i.e. 2-component) mixture, the 

pinch point usually (but NOT always) occurs 

when the top and the bottom operating lines 

cross each other on the equilibrium line as shown 

in Figure 6.2 
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Figure 6.2:  The pinch point for a binary 

mixture without the azeotrope 

(from “Separation Process Engineering” by Wankat, 2007) 

 

 Note that an exception that the pinch point is 

not at the intersection of the top operating line, 

the bottom operating line, and the equilibrium 

line is as illustrated in Figure 6.3 
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Figure 6.3:  The pinch point for a binary 

mixture with the azeotrope 

(from “Separation Process Engineering” by Wankat, 2007) 

 

 The case that the pinch point is the intersec-

tion point of the intersection of the top operating 

line, the bottom operating line, and the equili-

brium line as illustrated by Figure 6.2 can also be 

extended to the multi-component systems 
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 A.J.V. Underwood developed a procedure to 

calculate the minimum reflux ratio (published in 

Chemical Engineering Progress, Vol. 34, under 

the topic of “Fractional distillation of multi-com-

ponent mixtures” in 1948), which comprises a 

number of equations 

 

 The development of Underwood equations is 

rather complex, and it is not necessary, especially 

for practicing engineers, to understand all the 

details of the development/derivations 

 

 To be practical, we shall follow an approxi-

mate derivation of R.E. Thompson (published in 

AIChE Modular Instructions, Series B, Vol. 2, 

under the topic of “Shortcut design method-

minimum reflux” in 1980), which is good enough 

for engineering calculations 
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 Consider the enriching/rectifying section of a 

distillation column as shown in Figure 6.4 

 

Figure 6.4:  The enriching or rectifying section 

of the distillation column 

(from “Separation Process Engineering” by Wankat, 2007) 

 

 Performing a material balance for species i 

for the enriching/rectifying section in the case of 

minimum reflux ratio gives 

i, j+1
y , V  
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, 1 min , min , disti j i j i

y V x L x D+ = +  (6.28) 

 

 Since the pinch point is at the intersection of 

the top operating line, the bottom operating line, 

and the equilibrium line, the compositions (around 

the pinch point) are constant; i.e. 

      
, 1 , , 1i j i j i j

x x x- += =    (6.29a) 

and 

      
, 1 , , 1i j i j i j

y y y- += =    (6.29b) 

 

 The equilibrium equation of species i at stage 

1j +  can be written as follows 

     
, 1 , 1i j i i j

y K x+ +=    (6.30) 

 

 Combining Eq. 6.28 with Eqs. 6.29 (a & b) 

and 6.30 results in 
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, 1

min , 1 min , dist

i j
i j i

i

y
V y L Dx

K
+

+ = +  

            (6.31) 

 

 Let’s define the relative volatility of species i, 

i
a , as 

         
ref

i
i

K

K
a =     (6.32) 

where 
ref

K  is the K value of the reference species 

 

 Eq. 6.32 can be re-arranged to 

        
refi i

K Ka=     (6.33) 

 

 Combining Eq. 6.33 with Eq. 6.31 and re-

arranging the resulting equation yields 

min
min , 1 , 1 , dist

ref
i j i j i

i

L
V y y Dx

Ka+ += +  
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min
min , 1 , 1 , dist

ref

min
min , 1 , dist

min ref

1

i j i j i
i

i j i
i

L
V y y Dx

K
L

V y Dx
V K

a

a

+ +

+

- =

æ ö÷ç ÷- =ç ÷ç ÷çè ø

 

 

, dist

min , 1

min

min ref

1

i
i j

i

Dx
V y

L

V Ka

+ =
æ ö÷ç ÷-ç ÷ç ÷çè ø

 

            (6.34) 

 

 Multiplying both numerator and denomi-

nator of the right hand side (RHS) of Eq. 6.34 

with 
i

a  gives 

, dist

min , 1

min

min ref

i i
i j

i

Dx
V y

L

V K

a

a
+ =

æ ö÷ç ÷-ç ÷ç ÷çè ø

 

            (6.35) 
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 Taking a summation of Eq. 6.35 for all species 

results in 

( ) , dist

min , 1 min min

min

min ref

1 i i
i j

i

Dx
V y V V

L

V K

a

a
+ = = =

æ ö÷ç ÷-ç ÷ç ÷çè ø

å å  

            (6.36) 

 

 Performing the similar derivations for the 

stripping section (i.e. under the feed stage) yields 

     , bot

min

min

min ref

i i

i

Bx
V

L

V K

a

a

- =
æ ö÷ç ÷-ç ÷ç ÷çè ø

å  (6.37) 

 

 It is important to note that, since the condi-

tions in the enriching/rectifying section are diffe-

rent from those in the stripping section, we obtain 

the fact that, generally, 
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i i
a a¹  

and 

ref ref
K K¹  

 

 Underwood also defined the following terms: 

       min

min ref

L

V K
f =     (6.38a) 

and 

       min

min ref

L

V K
f =    (6.38b) 

 

 Combining Eqs. 6.38 (a & b) with Eqs. 6.36 

and 6.37 results in 

      
( )

, dist

min

i i

i

Dx
V

a

a f
=

-
å    (6.39) 

and 
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( )

, bot

min

i i

i

Bx
V

a

a f
- =

-
å   (6.40) 

 

 (6.39) + (6.40) gives 

( ) ( )
, dist , bot

min min

i i i i

i i

Dx Bx
V V

a a

a f a f

é ù
ê ú- = +ê ú

- -ê úë û
å  

            (6.41) 

 

 When the CMO and the constant relative 

volatilities (i.e. 
i i

a a= ) can be assumed, there 

are common values of f and f  (i.e. f f= ) that 

satisfy both Eqs. 6.39 and 6.40, thus making Eq. 

6.41 become 

( ) ( )
, dist , bot

min min

i i i i

i i

Dx Bx
V V

a a

a f a f

é ù
ê ú- = +ê ú

- -ê úë û
å  

            (6.42) 
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or 

( )
( )
, dist , bot

min min

i i i

i

Dx Bx
V V

a

a f

é ù+ê ú- = ê ú
-ê ú

ë û
å  

            (6.43) 

 

 By performing an overall or external material 

balance around the whole column, we obtain the 

following equation: 

     
, dist , boti i i

Fz Dx Bx= +   (6.44) 

 

 Combining Eq. 6.44 with Eq. 6.43 yields 

( )min min , min feed
i i

F

i

Fz
V V V V

a

a f
- = = D =

-
å  

            (6.45) 

 

 Note that 
feed

VD  or 
, minF

V  is the change in the 

vapour flow rate at the feed stage 
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 If the value of q, which is defined as 

feed 1F
V V

f q
F F

D
= = = -  

is known, 
feed

VD  or 
F

V  can be calculated from the 

following equation: 

       ( )feed
1V q FD = -    (6.46) 

 

 Eq. 6.45 is the first Underwood equation, used 

to estimate the value of f 

 

 Eq. 6.39: 

      
( )

, dist

min

i i

i

Dx
V

a

a f
=

-
å    (6.39) 

is the second Underwood equation, used to com-

pute the value of 
min

V  
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 Once 
min

V  is known, the value of 
min

L  can then 

be calculated from the material balance equation 

at the condenser as follows 

      
min min

L V D= -    (6.47) 

 

 Note that D  can be obtained from the follow-

ing equation: 

        ( ), disti
D Dx=å    (6.48) 

 

 Note also that, if there are C species (compo-

nents), there will be C values (roots) of f 

 

 The use of Underwood equations can be di-

vided into 3 cases as follows 

 Case A :  Assume that all non-keys (NKs) 

do not distribute; i.e. for the distillate, 



 36

HNK, dist
0Dx =  

and 

LNK, dist LNK
Dx Fz=  

while the amounts of key components (both HK 

and LK) are 

      ( )LK, dist LK LKdist
Dx FR Fz=   (6.49) 

and 

( )HK, dist HK HKbot
1Dx FR Fz= -  

            (6.50) 

 

 In this case (Case A), Eq. 6.45: 

     
( )feed

i i

i

Fz
V

a

a f
D =

-
å   (6.45) 

can, thus, be solved for the value of f , which is 

between the relative volatilities of LK and HK, 

or 
HK LK

a f a< <  
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 Case B :  Assume that the distributions of 

NKs obtained from the Fenske equation for the 

case of total reflux are still valid or applicable for 

the case of minimum reflux 

 

 In this case (Case B), the value of f is still 

between the relative volatilities of LK and HK, 

or 
HK LK

a f a< <  

 

 Case C :  In this case, the exact solutions 

(i.e. without having to make any assumptions as 

per Cases A and B) are obtained 

 

 As mentioned earlier, if there are C species, 

there will be C values for f 
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 Thus, we can have 1C -  degree of freedoms, 

which yields 1C -  equations for Eq. 6.39: 

      
( )

, dist

min

i i

i

Dx
V

a

a f
=

-
å    (6.39) 

and there are 1C -  unknowns (i.e. 
min

V  and 

, disti
Dx  for all LNK and HNK) 

 

 With 1C -  unknowns and 1C -  equations, 

the value of 
i

f  for each species can be solved as 

follows 

HNK, 1 1 HNK, 2 2 HK LK C-1 LNK, 1
...a f a f a a f a< < < < < < < <  

 

 The following Example is the illustration of 

the application of the Underwood equations 
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Example  For the same distillation problem on 

Page 13, determine the minimum reflux ratio, 

based on the feed rate of 100 kmol/h 

 

 Since it is given that the feed is a saturated 

vapour, 0q = , which results in 

( )
( )( )

feed
1

1 0 100

V q FD = -

= -
 

feed
100VD =  

 

 Hence, Eq. 6.45 becomes 

( )

( ) ( ) ( )

feed

benz benz tol tol cume cume
feed

benz tol cume

i i

i

Fz
V

Fz Fz Fz
V

a

a f
a a a

a f a f a f

D =
-

D = + +
- - -

å
 

            (6.51) 



 40

 Substituting corresponding numerical values 

into Eq. 6.51 gives 

( )( )
( )

( )( )
( )

( )( )
( )

2.25 100 0.40 1.0 100 0.30 0.21 100 0.30
100

2.25 1.0 0.21f f f
= + +

- - -
 

            (6.52) 

 

 Since the LK = toluene ( )1.0a =  and the HK 

= cumeme ( )0.21a = , the value of f is between 

0.21 and 1.0 

 

 Solving Eq. 6.52 yields 

0.5454f =  

 

 The next step is to determine the value of 

min
V  using Eq. 6.39: 

( )
, dist

min

i i

i

Dx
V

a

a f
=

-
å  
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 Since all species (including the LNK or ben-

zene) are distributed in both distillate and bot-

tom products, the value of 
, disti

Dx  of each species 

can be computed from the following equation: 

     
, dist , dist

( )
i i i

Dx z F FR=   (6.53) 

 

 It given, in the problem statement, (see Page 

13) that 

 the fraction recovery of toluene in the 

distillate 
tol, dist

( )FR  is 95% or 0.95 

 the fraction recovery of cumeme in the 

bottom 
cume, bot

( )FR  is 95% or 0.95; thus, 

cume, dist
( ) 1 0.95FR = -  = 0.05 
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 From the previous calculations (see Page 21), 

the fractional recovery of benzene (the LNK in 

this Example) or 
benz, dist

( )FR  is found be 0.998 

 

 Substituting corresponding numerical values 

into Eq. 6.53 yields 

 ( )( )( )benz, dist
0.40 100 0.998 39.9Dx = =  

 ( )( )( )tol, dist
0.30 100 0.95 28.5Dx = =  

 ( )( )( )cume, dist
0.30 100 0.05 1.5Dx = =  

 

 Thus, the value of 
min

V  can be computed as 

follows 

( )

( ) ( ) ( )

, dist

min

benz benz, dist tol tol, dist cume cume, dist

min

benz tol cume

i i

i

Dx
V

Dx Dx Dx
V

a

a f
a a a

a f a f a f

=
-

= + +
- - -

å
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( )( )
( )

( )( )
( )

( )( )
( )

min

2.25 39.9 1.0 28.5

2.25 0.5454 1.0 0.5454

0.21 1.5

0.21 0.5454

V = +
- -

+
-

 

 

min
114.4V =  

 

 We have learned that 

        ( ), disti
Dx D=å    (5.25) 

 

 Thus, for this Example, 

benz, dist tol, dist cume, dist

39.9 28.5 1.5

D Dx Dx Dx= + +
= + +

 

69.9D =  

 

 Accordingly, by using Eq. 6.47, the value of 

min
L  can be calculated as follows 
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min min
114.4 69.9 44.5L V D= - = - =  

 

 Therefore, the minimum reflux ratio 
min

L
D

æ ö÷ç ÷ç ÷ç ÷è ø
 is 

44.5
0.64

69.9
=  

 

6.3 Gilliland Correlation for Number of Stages 

at Finite Reflux Ratio 

 

 We have already studied how to estimate the 

numerical solutions for 2 extreme cases for multi-

component distillation; i.e. the total reflux case 

(proposed by Fenske) and the case of minimum 

reflux (proposed by Underwood) 
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 In order to determine the number of stages for 

multi-component distillation at finite reflux ratio, 

there should be a correlation that utilises the 

results from both extreme cases (i.e. the cases of 

total reflux and minimum reflux) 

 

 E.R. Gilliland established a technique that 

empirically correlates the number of stages, N , 

at finite reflux ratio 
L
D

æ ö÷ç ÷ç ÷ç ÷è ø
 to the minimum num-

ber of stages, 
min

N  (at the total reflux) and the 

minimum reflux ratio 
min

L
D

æ ö÷ç ÷ç ÷ç ÷è ø
 [which yields the 

infinite ( )¥  number of stages] 
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 The work was published in Industrial and 

Engineering Chemistry, Vol. 32, under the topic 

of “Multicomponent rectification: Estimation of 

the number of theoretical plates as a function of 

the reflux ratio” in 1940 

 

 In order to develop the correlation, Gilliland 

performed a series of accurate stage-by-stage 

calculations and found that there was a 

correlation between the function 
( )
( )

min

1

N N

N

-

+
 and 

the function min

1

L L
D D

L
D

é ùæ ö æ ö÷ ÷ç çê ú-÷ ÷ç ç÷ ÷ê úç ç÷ ÷è ø è øê úë û
é ùæ ö÷çê ú+÷ç ÷ê úç ÷è øë û
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 The correlation firstly developed by Gilliland 

was later modified by C.J. Liddle [published in 

Chemical Engineering, Vol. 75(23), under the 

topic of “Improved shortcut method for distilla-

tion calculations” in 1968] and could be presented 

in the form of chart as shown in Figure 6.5 

 

Figure 6.5:  The Gilliland correlation (1940) chart, 

which was modified by Liddle in 1968 

(from “Separation Process Engineering” by Wankat, 2007) 
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 The procedure of using the Gilliland’s correla-

tion/chart is as follows 

1) Calculate 
min

N  using the Fenske equation 

2) Calculate 
min

L
D

æ ö÷ç ÷ç ÷ç ÷è ø
 using the Underwood’s 

equations 

3) Choose actual or operating 
L
D

, which is 

normally within the range of 1.05 to 1.25 

times that of 
min

L
D

æ ö÷ç ÷ç ÷ç ÷è ø
 

(note the number between 1.05 to 1.25 

that uses to multiply 
min

L
D

æ ö÷ç ÷ç ÷ç ÷è ø
 is called a 

multiplier, M ) 
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4) Calculate the abscissa or the value of 

min

1

L L
D D
L
D

            
       

 (on the X-axis) 

5) Determine the ordinate or the value of 

( )
( )

min

1

N N

N

-

+
 (on the Y-axis) using the 

correlating line 

6) Calculate the actual number of stages, 

N  from the function 
( )
( )

min

1

N N

N

-

+
 

 

 It is important to note that the Gilliland’s 

correlation should be used only for rough esti-

mates – NOT for the exact solutions 
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 The optimal feed stage/plate can also be esti-

mated using the following procedure 

 

 First, the Fenske equation is used to deter-

mine the minimum number of stages, 
min

N  

 

 Then, the optimal feed stage can be obtained 

by determining the minimum number of stages 

required to go from the feed concentrations to the 

distillate concentrations for the key components, 

, minF
N , using the following equation: 

     

LK

HK dist

LK

HK

, min
LK-HK

ln

lnF

x

x

z

z
N

a

é ùæ ö÷çê ú÷ç ÷ê úç ÷çè øê ú
ê úæ öê ú÷ç ÷çê ú÷ç ÷çê úè øë û=   (6.54) 
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 Next, by assuming that the relative feed stage 

is constant as we change from total reflux to a 

finite value of reflux ratio, we obtain the follow-

ing equation: 

      , min

min

F F
N N

N N
=    (6.55) 

which is employed to calculate the optimal feed 

location, 
F

N  

 

 Alternatively, a probably more accurate equa-

tion (proposed by C.G. Kirkbride – in Separation 

Process Technology by J.L. Humphrey and G.E. 

Keller II, 1997) is used to estimate the optimal 

feed stage ( )f
N  as follows 
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2

LK, botHK

LK HK, dist

1
log 0.260 logf

f

N xzB
N N D z x

ì üï ïæ ö æ öæ ö- ï ï÷ ÷ç ç÷çï ï÷ ÷÷ç ç= çí ý÷ ÷÷ç çç÷ ÷ï ï÷ç-ç ç÷ ÷è øè ø è øï ïï ïî þ

 

            (6.56) 

 

 Note, once again, that both Eqs. 6.55 & 6.56 

should be used only for a first guess for specifying 

the optimal feed location 

 

 In addition to the chart (Figure 6.5 on Page 

47), the Gilliland’s correlation can also be pre-

sented in the form of equation as follows (note 

that x = min

1

L L
D D

L
D

é ùæ ö æ ö÷ ÷ç çê ú-÷ ÷ç ç÷ ÷ê úç ç÷ ÷è ø è øê úë û
é ùæ ö÷çê ú+÷ç ÷ê úç ÷è øë û

) 
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 For .£ £0 0 01x : 

( )
( )

min 1.0 18.5715
1

N N
x

N

-
= -

+
 

            (6.57) 

 For .<0.01 0 90x < : 

( )
( )

min 0.002743
0.545827 0.591422

1

N N
x

xN

-
= - +

+
 

            (6.58) 

 For .<0.90 1 0x < : 

( )
( )

min 0.16595 0.16595
1

N N
x

N

-
= -

+
 

            (6.59) 

 

 The use of the Gilliland’s correlation to esti-

mate the total number of stages and the optimal 

feed stage is illustrated in the following Example 
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Example  Estimate the total number of equili-

brium stages ( )N  and the optimal feed stage ( )F
N  

for the same Example on Pages 13 & 39 if the 

actual reflux ratio 
L
D

æ ö÷ç ÷ç ÷ç ÷è ø
 is set at 2.0 

 

 To obtain the solutions for this Example, we 

follow the following procedure: 

1) Calculate the value of 
min

N  

  From the Example on Page 13, we obtain 

min
3.8N =  

 

2) Calculate the value of 
min

L
D

æ ö÷ç ÷ç ÷ç ÷è ø
 

  From the Example on Page 39, we obtain 
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min

0.64
L
D

æ ö÷ç =÷ç ÷ç ÷è ø
 

3) Choose the value of the actual 
L
D

 

  It is given that the actual or operating 
L
D

 

is set as 2.0 

 

4) Calculate the abscissa (the X-axis of the 

Gilliland’s chart) 

  The abscissa can be computed using the 

values of 
min

L
D

æ ö÷ç ÷ç ÷ç ÷è ø
 and the actual 

L
D

 as follows 

min
2.0 0.64

0.453
2.0 1

1

L L
D D

L
D

é ùæ ö æ ö÷ ÷ç çê ú-÷ ÷ç ç÷ ÷ê ú é ùç ç÷ ÷ -è ø è øê ú ê úë û ë û= =
é ù é ùæ ö +ê ú÷çê ú ë û+÷ç ÷ê úç ÷è øë û
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5) Determine the value of ordinate (the  

Y-axis of the Gilliland’s chart) 

  The ordinate can be read from the chart 

when the abscissa is known 

 

   With the abscissa, min

1

L L
D D

L
D

é ùæ ö æ ö÷ ÷ç çê ú-÷ ÷ç ç÷ ÷ê úç ç÷ ÷è ø è øê úë û
é ùæ ö÷çê ú+÷ç ÷ê úç ÷è øë û

 of 0.453, 

the ordinate is found to be 

( )
( )

min 0.27
1

N N

N

-
»

+
 

 

  Alternatively, we can use Eq. 6.58 to com-

pute the value of the ordinate, 
( )
( )

min

1

N N

N

-

+
, as 

follows 
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( )
( ) ( )min 0.002743

0.545827 0.591422 0.453
0.4531

N N

N

-
= - +

+
 

( )
( )

min 0.284
1

N N

N

-
=

+
 

 

  Note that Eq. 6.58 is used because the 

value of the abscissa is between 0.01-0.90 (i.e. 

min 0.453

1

L L
D D

x
L
D

é ùæ ö æ ö÷ ÷ç çê ú-÷ ÷ç ç÷ ÷ê úç ç÷ ÷è ø è øê úë û= =
é ùæ ö÷çê ú+÷ç ÷ê úç ÷è øë û

) 

 

6) Calculate the value of N  

  The number of equilibrium stages, N , can 

be computed using the values of the ordinate 

and 
min

N  as follows 
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( )
( )
( )
( )

( )

min 0.27
1

3.8
0.27

1

3.8 0.27 1

N N

N

N

N

N N

-
=

+

-
=

+

- = +

 

3.8 0.27 0.27

0.73 4.07

N N

N

- = +
=

 

 

5.58N =  

 

  The optimal feed location (stage), 
F

N , can 

then be obtained using Eqs. 6.54 and 6.55 as fol-

lows 

 

  It is given that (see Page 13) 

 
LK tol

0.30z z= =  

 
HK cume

0.30z z= =  
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  From the Example on Pages 39-44, we ob-

tained the following: 

 
tol, dist

28.5Dx =  

 
cume, dist

1.5Dx =  

 ( ), dist
69.9

i
D Dx= =å  

 

  Thus, the values of 
tol, dist

x  and 
cume, dist

x  

can be computed as follows 

 tol, dist

tol, dist

28.5
0.408

69.9

Dx
x

D
= = =  

 cume, dist

cume, dist

1.5
0.021

69.9

Dx
x

D
= = =  

 

 Substituting corresponding numerical values 

into Eq. 6.54 results in 
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, min

0.408

0.021
ln

0.30

0.30
1.90

1
ln

0.21

F
N

é ùæ ö÷çê ú÷ç ÷ê úç ÷è øê ú
ê úæ ö÷çê ú÷ç ÷ê úç ÷è øë û= =
æ ö÷ç ÷ç ÷ç ÷è ø

 

 

 Hence, the optimal feed stage for the case of 

finite reflux ratio (
L
D

 = 2.0 in this Example) can 

be calculated using Eq. 6.55 as follows 

, min

min

F F
N N

N N
=  

, min

min

1.90
5.58

3.8
F

F

N
N N

N

æ ö æ ö÷ç ÷ç÷ç= = ÷ç÷ç ÷ç÷ ÷ç ÷ è øè ø
 

 

2.79 3
F

N = »  
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Figure 6.5:  Gilliland’s correlation chart (modified by Liddle in 1968) 

(from “Separation Process Engineering” by Wankat, 2007) 


