# Chapter 7: Batch Distillation

In the previous chapters, we have learned the distillation operation in the *continuous* mode, meaning that

- the feed(s) is(are) fed *continuously* into the distillation column
- the distillation products [e.g., distillate, bottom, side stream(s)] are continuously withdrawn from the column

In the continuous operation, after the column has been operated for a certain period of time, the system reaches a **steady state**  At *steady state*, the **properties** of the **system**, such as

- the feed flow rate
- the flow rates of, *e.g.*, the distillate and the bottom
- the feed composition
- the compositions of the distillate and the bottom
- reflux ratio  $\left(L_{o} / D\right)$
- system's pressure

are constant

With these characteristics, a *continuous* distillation is the *thermodynamically* and *economically* efficient method for producing *large* amounts of material of *constant* composition However, when *small* amounts of products of *varying* compositions are required, a *batch* distillation provides several *advantages* over the *continuous* distillation (the details of the *batch* distillation will be discussed later in this chapter)

Batch distillation is *versatile* and commonly employed for producing *biochemical*, *biomedical*, and/or *pharmaceutical* products, in which the production *amounts* are *small* but a very high *purity* and/or an *ultra clean* product is *needed* 

The equipment for batch distillation can be arranged in a wide variety of configurations In a *simple* batch distillation (Figure 7.1), *vapour* (*i.e.* the *product*) is *withdrawn* from the *top* of the re-boiler (which is also called the "still **pot**") continuously, and by doing so, the *liquid level* in the still pot is *decreasing continuously* 



#### Figure 7.1: A simple batch distillation

(from "Separation Process Engineering" by Wankat, 2007)

Note that the *distillation system* shown in **Figure 7.1** is *similar* to the *flash distillation*  However, there are a number of differences between the *batch* distillation (e.g., Figure 7.1) and the *flash* distillation: *i.e.* 

- in the *flash* distillation, feed is *continuous*ly fed into the column, whereas there is *no continuous* feed input into the still pot for the *batch* distillation
- in the *flash* distillation, the products (*i.e.* vapour and liquid products) are withdrawn continuously from the system, whereas, for the *batch* distillation, the **remaining liquid** in the **still pot** is *drained* **out** of the pot (or the re-boiler) *only* at the *end* **of the distillation**

Another configuration of batch distillation is a *constant-level* batch distillation, which is similar to the simple batch distillation, as illustrated in Figure 7.1; however, in this configuration, the **liquid** (*i.e.* the feed) is *continuously* fed into the still pot (or the re-boiler) to keep the *liquid* level in the pot *constant* 

The more complex batch distillation (than the simple and the constant-level batch distillation) is the multi-stage batch distillation

In this distillation system, a staged or packed distillation column is placed on top of the reboiler (or the still pot), as shown in Figure 7.2



**Figure 7.2: A multi-stage batch distillation** (from "Separation Process Engineering" by Wankat, 2007)

In the **usual operation** of the *multi-stage* distillation system, the **distillate** is **withdrawn** continuously from the system, until the distillation is ended Another way of operating the multi-stage batch distillation is that the system is operated such that there is **no distillate withdrawn** from the column (or system), thus **resulting in** a **continuous change** in the **concentration** or **composition** of **liquid** in the **pot** (or the **re-boiler**)

Additionally, when a *pure* bottom product is *required*, an *inverted* batch distillation is employed

In this technique (*i.e.* the inverted batch distillation), the **bottom product** or the *liquid* in the **re-boiler** is **withdrawn** *continuously* while the *distillate* is **withdrawn** only **at the** *end* of the distillation

# 7.1 Binary-mixture Batch Distillation: Rayleigh Equation

The material balances for the *batch* distillation are *different* from those for *continuous* distillation

In the **batch** distillation, the **main** focus is at the total amounts of input(s) [*i.e.* feed(s)] and **outputs** (*e.g.*, distillate or bottom) collected at the end of the distillation, *rather than* the **rates** of such inputs and outputs

The material balances around the *batch distillation* system for the *entire operating time* are as follows

#### <u>Overall</u>:

$$F = W_{\text{final}} + D_{\text{total}} \tag{7.1}$$

#### where

- F = the total amount of feed fed intothe distillation column for the entire operating period
- $W_{\text{final}}$  = the final amount of liquid in the re-boiler (the notation W is used because the remaining liquid in the still pot is normally a *waste*)
- $D_{\text{total}}$  = the total amount of the distillate withdrawn from the distillation column (in some textbooks, the notation  $D_{\text{final}}$  may be used)

<u>Species balance</u> (for a more volatile component: MVC):

$$x_F F = x_{w,\text{final}} W_{\text{final}} + x_{D,\text{avg}} D_{\text{total}}$$
(7.2)

#### where

- $x_{_{F}}$  = mole fraction of a more volatile species in the feed
- $x_{w,\text{final}}$  = the mole fraction of an MVC of the remaining liquid in the re-boiler
- $x_{D,avg}$  = an *average* concentration of an MVC in the distillate (in some textbooks the notation  $x_{D,final}$  may be used)

Normally, F and  $x_F$  are specified (or given in the problem statement), and the value of either  $x_{w,\text{final}}$  or  $x_{D,\text{avg}}$  is also specified (or given)

Thus, there are **3 unknowns** for the *binarymixture* **batch** distillation **system**:

- $W_{\rm final}$
- $D_{\text{total}}$
- either  $x_{D,avg}$  or  $x_{w,final}$

Problematically, however, by just performing material balances, we have only 2 equations (*i.e.* Eqs. 7.1 and 7.2)

Hence, another or additional equation is required The *additional* equation for solving *batch distillation* problems is commonly known as the *Rayleigh* equation

To derive this equation, Lord Rayleigh (1902) employed the facts that (see Figure 7.1), at any instant of time,

- the rate of the distillate flowing out of the batch distillation system, dD, is equal to the decreasing rate of the liquid in the still pot, −dW
- 2) the rate of species *i* in the distillate flowing out of the batch distillation system,  $x_D dD$ , is equal to the decreasing rate of species *i* the liquid in the still pot  $-d(Wx_w)$

Thus, the following equations can be formulated:

$$dD = -dW \tag{7.3}$$

$$x_D dD = -d\left(W x_w\right) \tag{7.4}$$

Note that it is assumed that, at any instant of time, the *concentration* or the *composition* of the *distillate*  $(x_D)$  is *constant* 

Combining Eq. 7.3 with Eq. 7.4 and re-arranging gives

$$-x_{D}dW = -d\left(Wx_{w}\right)$$

$$-x_D dW = -W dx_w - x_w dW$$
(7.5)

Re-arranging Eq. 7.5 and integrating the resulting equation yields

$$\begin{split} Wdx_w &= x_D dW - x_w dW \\ Wdx_w &= \left(x_D - x_w\right) dW \\ \frac{dx_w}{\left(x_D - x_w\right)} &= \frac{dW}{W} \end{split}$$

$$\int_{W=F}^{W=W_{\text{final}}} \frac{dW}{W} = \int_{x_w=x_F}^{x_w=x_{w,\text{final}}} \frac{dx_w}{x_D - x_w}$$

which results in

$$\ln\left(\frac{W_{\text{final}}}{F}\right) = \int_{x_F}^{x_{w,\text{final}}} \frac{dx_w}{x_D - x_w}$$
(7.6a)

or

$$\ln\left(\frac{W_{\text{final}}}{F}\right) = -\int_{x_{w,\text{final}}}^{x_{F}} \frac{dx_{w}}{x_{D} - x_{w}} \quad (7.6b)$$

In order to perform an integration of the right hand side (RHS) of Eq. 7.6 (a & b),  $x_D$  must be a function of  $x_w$ :

$$x_{D} = y = f\left(x_{w}\right)$$

For a simple batch distillation shown in Figure 7.1, it is reasonable to assume that the *vapour* that comes out of the top of the still pot (or the re-boiler) [note that the amount of the vapour is equal to that of the distillate] is *in equilibrium* with the *liquid* (W) in the re-boiler

Thus, if the total condenser is used,

$$y = x_D$$

and  $x_D$  and  $x_w$  can be related to each other using an *equilibrium curve* or *equilibrium equation* 

Accordingly, Eq. 7.6b can be re-written as follows

$$\ln\left(\frac{W_{\text{final}}}{F}\right) = -\int_{x_{w,\text{final}}}^{x_{F}} \frac{dx}{y-x} = -\int_{x_{w,\text{final}}}^{x_{F}} \frac{dx}{f(x)-x}$$

$$(7.7)$$

Note that  $y = f(x) = x_D$  and  $x = x_w$ 

The integration of the RHS of Eq. 7.7 can be done sequentially (ตามขั้นตอน) as follows

- 1) Plot an *equilibrium* curve
- 2) At each value of x (from  $x_F$  to  $x_{w,\text{final}}$ ), determine the value of y (or  $x_D$ ) from the equilibrium curve/equation

3) Plot 
$$\frac{1}{y-x}$$
 (Y-axis) against  $x$  (X-axis) or fit it to an equation

1

4) Graphically determine the area under the curve from  $x_F$  to  $x_{w,\text{final}}$  or perform the integration analytically or numerically from  $x_F$  to  $x_{w,\text{final}}$ ; the graphical integration is as illustrated below



(from "Separation Process Engineering" by Wankat, 2007)

After the numerical value of the integration is obtained, the value of  $W_{\text{final}}$  (*i.e.* the amount of liquid remained in the still pot) can be obtained from manipulating Eq. 7.7 as follows

$$W_{\text{final}} = F \exp\left(-\int_{x_{w,\text{final}}}^{x_{F}} \frac{dx}{y-x}\right)$$
(7.8a)

or

$$W_{\text{final}} = F \exp\left(-\text{area under the curve}
ight)$$
(7.8b)

Finally, the value of the *average* distillate concentration,  $x_{D,avg}$ , and the total amount of the distillate,  $D_{total}$ , can be obtained by solving Eqs. 7.1 and 7.2:

$$F = W_{\text{final}} + D_{\text{total}} \qquad (7.1)$$
$$x_F F = x_{w,\text{final}} W_{\text{final}} + x_{D,\text{avg}} D_{\text{total}} \qquad (7.2)$$

#### simultaneously, which results in

$$x_{\scriptscriptstyle D,avg} = \frac{x_{\scriptscriptstyle F} F - x_{\scriptscriptstyle w, \rm final} W_{\scriptscriptstyle \rm final}}{F - W_{\scriptscriptstyle \rm final}}$$

#### and

$$D_{\rm total} = F - W_{\rm final} \tag{7.10}$$

(7.9)

In the case that the equilibrium relationship between  $y(x_D)$  and  $x(x_w)$  is given as  $y = \frac{\alpha x}{1 + (\alpha - 1)x}$ 

the RHS of Eq. 7.7 can be integrated analytically as follows

$$\ln\left(\frac{W_{\text{final}}}{F}\right) = -\int_{x_{w,\text{final}}}^{x_{F}} \frac{dx}{y-x}$$

$$= \frac{1}{\left(\alpha - 1\right)} \ln\left[\frac{x_{w,\text{final}}\left(1 - x_{F}\right)}{x_{F}\left(1 - x_{w,\text{final}}\right)}\right]$$

$$+ \ln\left[\frac{\left(1 - x_{F}\right)}{\left(1 - x_{w,\text{final}}\right)}\right]$$

$$(7.11)$$

)

For the problem that the value of  $x_D$  is specified, and the value of  $x_{w,\text{final}}$  is to be determined, a *trial & error* technique must be employed as follows

1) Make a first  $(1^{st})$  guess for the value of  $x_{w,\text{final}}$  and calculate the value of the integration of Eq. 7.8a or determine the area

under the curve for Eq. 7.8b, according to the guessed value of  $x_{w,\text{final}}$ 

- 2) Then, the value of  $W_{\text{final}}$  can be calculated from Eq. 7.8 (either a or b)
- 3) Use the value of  $W_{\text{final}}$  obtained from 2 and the guessed value of  $x_{w,\text{final}}$  made in 1, combined with the given values of F and  $x_{F}$ , to compute the values of  $D_{\text{calc}}$  and  $x_{D,\text{calc}}$  using the following equations:

$$D_{\rm calc} = F - W_{\rm final} \tag{7.12}$$

and

$$x_{D,\text{calc}} = \frac{x_F F - x_{w,\text{final}} W_{\text{final}}}{D_{\text{calc}}}$$

(7.13)

4) Compare the value of  $x_{D,calc}$  obtained from 3 with the given value of  $x_D$ : if  $x_{D,calc} = x_D$ , the trial & error procedure is finished; however, if  $x_{D,calc} \neq x_D$ , the **new** trial & error has to be repeated, until we obtain the guessed value of  $x_{w,final}$  that makes  $x_{D,calc} = x_D$ 

The following Example illustrates the employment of the *trial & error* technique to solve the *batch distillation* problem **Example** Use the given equilibrium data of methanol (MeOH) and water for solving the simple *batch distillation* problem with the following description:

A *single*-equilibrium-*stage* (or a *simple*) batch still pot is used to separate MeOH from water

The feed with the total amount of 50 moles of an 80 mol% MeOH is charged into the still pot operated at 1 atm

The desired distillate concentration  $(x_D)$  is 89.2 mol% MeOH

### Determine:

- a) the total amount of the distillate collected  $\Bigl(D_{\rm total}\Bigr)$
- b) the amount of material (liquid or waste) remained in the pot after the distillation has ended  $(W_{\text{final}})$  and its corresponding concentration  $(x_{w,\text{final}})$

It is given that

• F = 50 moles

• 
$$x_F = 0.80$$

• 
$$x_{D,avg} = 0.892$$

The equilibrium (y - x) data of MeOH is as summarised in the following Table

| Methanol liquid $\left( oldsymbol{x}_{_{\mathrm{MeOH}}}  ight)$ | Methanol vapour $\left( oldsymbol{y}_{	ext{MeOH}}  ight)$ |  |
|-----------------------------------------------------------------|-----------------------------------------------------------|--|
| (mol%)                                                          | $({ m mol}\%)$                                            |  |
| 0                                                               | 0                                                         |  |
| 2.0                                                             | 13.4                                                      |  |
| 4.0                                                             | 23.0                                                      |  |
| 6.0                                                             | 30.4                                                      |  |
| 8.0                                                             | 36.5                                                      |  |
| 10.0                                                            | 41.8                                                      |  |
| 15.0                                                            | 51.7                                                      |  |
| 20.0                                                            | 57.9                                                      |  |
| 30.0                                                            | 66.5                                                      |  |
| 40.0                                                            | 72.9                                                      |  |
| 50.0                                                            | 77.9                                                      |  |
| 60.0                                                            | 82.5                                                      |  |
| 70.0                                                            | 87.0                                                      |  |
| 80.0                                                            | 91.5                                                      |  |
| 90.0                                                            | 95.8                                                      |  |
| 95.0                                                            | 97.9                                                      |  |
| 100.0                                                           | 100.0                                                     |  |

In this Example, the unknowns are

- $D_{\text{total}}$
- $W_{\rm final}$
- $x_{w, \text{final}}$

Since  $x_{w,\text{final}}$ , one of the integral boundaries, is NOT known, a *trial & error* technique must be employed to compute the integral  $\int_{x_{w,\text{final}}}^{x_F} \frac{dx}{y-x}$ 

To start the calculations, the  $1^{\rm st}$  guess with  $x_{\!_{w,{\rm final}}}$  of 0.70 is used From the given equilibrium data, the value of  $\frac{1}{y-x}$  for each value of x can be summarised in the following Table (note that interpolations are needed to obtain the values of y and  $\frac{1}{y-x}$  when

| x    | y     | $oldsymbol{y} - oldsymbol{x}$ | $rac{1}{y-x}$ |
|------|-------|-------------------------------|----------------|
| 0.80 | 0.915 | 0.115                         | 8.69           |
| 0.75 | 0.895 | 0.145                         | 6.89           |
| 0.70 | 0.871 | 0.171                         | 5.85           |
| 0.65 | 0.845 | 0.195                         | 5.13           |
| 0.60 | 0.825 | 0.225                         | 4.44           |
| 0.50 | 0.780 | 0.280                         | 3.57           |

the values of x are, *e.g.*, 0.75, 0.65):

Plotting a graph between x (X-axis) and  $\frac{1}{y-x}$  (Y-axis) using the data in the Table on the previous Page, from  $x_{w,\text{final}} = 0.70$  (the dashed lines) to  $x_F = 0.80$ , yields the following graph



(from "Separation Process Engineering" by Wankat, 2007)

From the resulting graph,  $\int_{0.70}^{0.80} \frac{dx}{y-x}$  is, in fact, the **area under the curve** from x = 0.70 to x =

0.80

For this Example, the **area under the curve** is found to be **0.7044** 

The value of  $W_{\text{final}}$  (*i.e.* the liquid remained in the still pot) can then be calculated, using Eq. 7.8b, as follows

$$W_{\text{final}} = F \exp\left(-\text{area under the curve}
ight)$$
  
=  $(50) \exp\left(-0.7044\right)$ 

$$W_{\rm final} = 24.72 \, \, {
m mol}$$

Thus, the *total* amount of the distillate can be computed using from Eq. 7.12 as follows

$$egin{aligned} D_{\mathrm{calc}} &= F - W_{\mathrm{final}} \ &= 50 - 24.72 \end{aligned}$$

$$D_{\text{calc}} = 25.28$$

The value of  $x_{D, calc}$  can be calculated using Eq. 7.13 as follows

$$\begin{split} x_{D,\text{calc}} &= \frac{x_F F - x_{w,\text{final}} W_{\text{final}}}{D_{\text{calc}}} \\ &= \frac{\left[ \left( 0.80 \right) \left( 50 \right) \right] - \left[ \left( 0.70 \right) \left( 24.72 \right) \right]}{\left( 25.28 \right)} \end{split}$$

$$x_{D, \mathrm{calc}} = 0.898$$

However, the *desired* value of  $x_D$  or  $x_{D,avg}$  is 0.892 – the **calculated**  $x_D$  value is **too high!**  Thus, a new guess of  $x_{w,\text{final}}$  is needed

With the new guess of  $x_{w,\text{final}}$  of 0.60, we obtain the following (by performing similar calculations as above):

- area under the curve from  $x_{\!_{w,{\rm final}}}=0.60$  to  $x_{\!_F}=0.80~{\rm is}~1.2084$ 

• 
$$W_{\text{final}} = 50 \exp(-1.2084) = 14.93$$

• 
$$D_{\text{calc}} = F - W_{\text{final}} = 50 - 14.93 = 35.07$$

• 
$$x_{D, calc} = 0.885$$
 (too low!)

Hence, we need to make a new (the  $3^{\rm rd})$  guess for  $x_{\!_{w,{\rm final}}}$ 

With the 3<sup>rd</sup> guess of  $x_{w,\text{final}}$  of 0.65, we obtain the following (try doing the detailed calculations yourself):

- area under the curve (from x = 0.65 to x = 0.80) = 0.9710
- $W_{\text{final}} = 18.94$
- $D_{\rm calc} = 31.06$
- $x_{D, calc} = 0.891 (O.K. close enough!)$

## 7.2 Constant-level Batch Distillation

The recent Example is the *simple batch* distillation problem in which the amount of liquid in the still pot is decreasing as the distillation proceeds (while the distillate is being collected) In a *constant-level* batch distillation, which is another configuration of a batch distillation, a **solvent** (or the feed) is **added** to the re-boiler (or the still pot) to **keep** the **level** of the liquid in the pot **constant** 

Note that, during the addition of the solvent, the **total number of moles of all species** in the still pot is kept **constant** 

The total mole balance is

$$[In] - [Out] = \begin{vmatrix} Accumulation \\ in the still pot \end{vmatrix}$$
(7.14)

Since, in this kind of batch distillation, the **total number of moles** is **constant**, Eq. 7.14 becomes

$$\left[\operatorname{In}\right] - \left[\operatorname{Out}\right] = 0 \tag{7.15}$$

Also, since this is a **constant-level** batch distillation, the **amount** of **solvent evaporated**  $\left(-dV\right)$ must be **equal** to the amount of **solvent added** to the still pot  $\left(+dS\right)$  — note that the solvent added into the still pot is called "the *second solvent*"

$$-dV = dS \tag{7.16}$$
$$(\text{or } dV = -dS)$$

Performing a **species** (or **component**) **balance** on the *evaporated* solvent (called "the *original solvent*") gives

$$\begin{aligned} -ydV &= -d\left(Wx_{w}\right)\\ ydV &= d\left(Wx_{w}\right) \end{aligned}$$

[note that, at any instant of time, the concentration of the vapour evaporated from the liquid (y)is constant; thus, it is drawn from the differentiation)

$$ydV = Wdx_w + x_w dW \tag{7.17}$$

but W is kept *constant* 

Thus, Eq. 7.17 becomes  

$$ydV = Wdx_w$$
 (7.18)

Substituting Eq. 7.16 into Eq. 7.18 yields

$$-ydS = Wdx_w \tag{7.19}$$

Re-arranging Eq. 7.19 and integrating the resulting equation gives



$$\frac{S}{W} = \int_{x_{w,\text{final}}}^{x_{w,\text{initial}}} \frac{dx_w}{y}$$
(7.20)

In this kind of batch distillation, **the vapour** phase and **the liquid** phase in the system (*i.e.* the still pot) are assumed to be **in equilibrium** with each other Hence, the value of y (the concentration of the vapour phase) can be related to the value of  $x_w$  (the concentration of the liquid phase in the still pot) using either equilibrium curve or equation

If the relationship between y and  $x_w$  can be expressed in the following form:

$$y = \frac{\alpha x_w}{1 + (\alpha - 1)x_w} \tag{7.21}$$

the integral of the RHS of Eq. 7.20 is

$$\frac{S}{W} = \frac{1}{\alpha} \ln \left[ \frac{x_{w, \text{ initial}}}{x_{w, \text{ final}}} \right] + \frac{\alpha - 1}{\alpha} \left( x_{w, \text{ initial}} - x_{w, \text{ final}} \right)$$
(7.22)

Alternatively, the graphical solution (for the value of  $\frac{S}{W}$ ) to this kind of problem can be obtained as follows

For each value of  $x_w$ , the value of y can be read from the equilibrium curve, and the graph between  $x_w$  (X-axis) and  $\frac{1}{y}$  (Y-axis) is plotted

The area under the curve from  $x_{\!_{w,\,\rm final}}$  to  $x_{\!_{w,\,\rm initial}}$  is, in fact,  $\frac{S}{W}$ 

Generally, the value of W is given; thus, Eq. 7.20 (or 7.22) is normally used to compute the value of S (*i.e.* the *amount* of *solvent* required to keep the *liquid level* in the still pot *constant*)

## 7.3 Batch Steam Distillation

In the *batch steam* distillation, steam is purged directly into the still pot, as shown in Figure 7.3



**Figure 7.3: A batch steam distillation** (from "Separation Process Engineering" by Wankat, 2007)

Normally, the *direct addition* of *steam* into the still pot is done for the system that is NOT *miscible* (ละลาย) with water Like the *steam* distillation in the continuous operation, the *principal* purpose of adding steam directly into the still pot is to keep the temperature of the system *below* the boiling point of water, while eliminating the need of a heat transfer device (as steam can provide heat/ energy to the system)

By solving Eqs 7.1:

$$F = W_{\text{final}} + D_{\text{total}} \tag{7.1}$$

and 7.2:

$$x_F F = x_{w,\text{final}} W_{\text{final}} + x_{D,\text{avg}} D_{\text{total}}$$
(7.2)

simultaneously, we obtain the following equation:

$$W_{\text{final}} = F\left(\frac{x_D - x_F}{x_D - x_{w,\text{final}}}\right)$$
(7.23)

Since the more volatile component (*e.g.*, the volatile organic components: VOCs) is *much more volatile* than water, *its* concentration (*i.e.*  $x_D$ ) in the *vapour phase* can be considered *pure* (*i.e.* the distillate contains only the VOCs, or  $x_D$  for the VOCs is 1.0)

Thus, Eq. 7.23 becomes

$$W_{\rm final} = F \Biggl( \frac{1 - x_{\rm \scriptscriptstyle F}}{1 - x_{\rm \scriptscriptstyle w, final}} \Biggr) \label{eq:wfinal}$$

(7.24)

The amount of the distillate, D, can, thus, be calculated using the following equation:

$$D = F - W_{\text{final}} \tag{7.25}$$

The amount of water in the separating tank  $\binom{n_w}{}$  (see Figure 7.3), which is, in fact, the amount of steam condensed at the condenser, can be computed using the following equation:

$$n_{w} = \int_{0}^{D} \frac{P_{\text{total}} - x_{\text{VOC in the remaining liquid}} P_{\text{VOC}}^{*}}{x_{\text{VOC in the remaining liquid}} P_{\text{VOC}}^{*}} dn_{org}$$

$$(7.26)$$

The total amount of steam required is  $n_w$  plus with the amount of steam that is condensed and remained in the still pot (note that this steam is used to heat up the feed and vaporise the VOCs)

$$(n_{\text{steam}})_{\text{total}} = n_w + (n_{\text{steam}})_{\text{used to heat up the feed}}$$
(7.27)

#### 7.4 Multi-stage Batch Distillation

If very high purity of a product (either distillate or bottom) is needed, a multi-stage column is added to the batch distillation system, as illustrated in Figure 7.2 (Page 7)

The complexity with the *multi-stage* equilibrium is attributed to the fact that  $x_D$  and  $x_w$ are *no longer in equilibrium* with each other as *per* the case of the *simple batch* distillation In other words, the relationship between  $x_D$ and  $x_w$  can **no longer** be expressed using the equilibrium curve or equation

Accordingly, the Rayleigh equation (*i.e.* Eq. 7.6a or 7.6b), cannot be integrated until the relationship between  $x_D$  and  $x_w$  is established

Generally, this relationship between  $x_D$  and  $x_w$  for the *multi-stage* distillation can be obtained by performing *stage-by-stage* calculations

The following is how to formulate the relationship between  $x_D$  and  $x_w$  for the *multi-stage* distillation system Performing material and energy balances for Figure 7.2 from stage j to the top of the column, with the assumption that the *accumulation* at *any where* **except** the **re-boiler** is *negligible*, yields

$$V_{j+1} = L_j + D (7.28)$$

$$y_{j+1}V_{j+1} = x_jL_j + x_D D (7.29)$$

$$Q_{C} + V_{j+1}H_{j+1} = L_{j}h_{j} + Dh_{D} \quad (7.30)$$

In order to simplify the calculations, CMO is assumed, and the *operating equation* of the *multistage* batch distillation can be written, by rearranging Eq. 7.29, as follows

$$y_{j+1} = \frac{L}{V}x_j + \left(1 - \frac{L}{V}\right)x_D \qquad (7.31)$$

However, the *difficulty* of using Eq. 7.31 in the *batch* distillation is that either  $x_D$  or  $\frac{L}{V}$  is *varying* during the operation, thus resulting in the fact that the *operating line* will *continuously* be *changing* (or it is *not constant*) throughout the operation

Normally, the *batch* distillation operation can be divided into  $2 \mod s$ :

• Constant reflux ratio 
$$\left(\frac{L}{D}\right)$$

• Constant distillate concentration  $(x_D)$ 

The following is the details of each mode

### 7.4.1 Constant reflux ratio

One of the most common *multi-stage* batch distillation modes is the operation in which the **reflux ratio**  $\left(\frac{L}{D}\right)$  is kept **constant** throughout the distillation

In this kind of operation, the concentration of the distillate  $(x_D)$  is varied (changed), while the values of L and V are kept constant (by fixing the reflux ratio) Accordingly, we obtain the operating lines with the same slope (i.e. the same  $\frac{L}{V}$ ) but various Y-intercepts; note that the points where  $y = x = x_p$  are also varied

In other words, in this kind of distillation operation (*i.e. batch* distillation), there are *several operating lines*, which is in contrast to the case of *continuous* distillation, in which there is *only one* operating line

After an *appropriate* number of operating lines are plotted for each value of  $x_D$ , we step off stages (for a given number of equilibrium stages) to find the value of  $x_w$  for each  $x_D$  Once  $x_w$  value for each value of  $x_D$  is obtained, we can perform the integration for the Rayleigh equation (Eq. 7.6), and the values of

- W<sub>final</sub>
  D<sub>total</sub>
- $x_{_{D,\mathrm{avg}}}$

will subsequently be obtained

Note, once again, that if the value of  $x_{D,avg}$  is specified, the *trial & error* technique is to be employed to calculate the value of  $x_{w,final}$ 

Let's examine the following Example, which illustrates how to solve the *constant reflux ratio* distillation problem **Example** The 50-mol feed comprising 32% EtOH and 68% water is to be distilled in the *multi-stage* batch distillation with the additional 2 equilibrium stages on top of the re-boiler (still pot)

Reflux is returned to the column as a saturated liquid with the *constant* reflux ratio  $\left(\frac{L}{D}\right)$  of 2/3

It is desired that the solvent remained in the still pot has the concentration of EtOH of 4.5 mol%

Determine the average distillate composition  $(x_{D,\text{avg}})$ , the final amount (in moles) of liquid in the still pot  $(W_{\text{final}})$ , and the total amount of the distillate collected  $(D_{\text{total}})$ 

The operation is at 1 atm

The schematic diagram of the batch distillation in this Example is as shown below





Since the operation is at 1 atm, the equilibrium curve of EtOH can be obtained from the x - y equilibrium data of the EtOH-water mixture at 1 atm A value of  $x_D$  is selected (specified), and the corresponding value of  $x_w$  for each selected value of  $x_D$  (or for each operating line) for the **number of stages** of **3** (**why "3"?**) is obtained, as shown in the following McCabe-Thiele diagram



(from "Separation Process Engineering" by Wankat, 2007)

From each pair of  $x_D$  and  $x_w$ , the value of  $\frac{1}{x_D - x_w}$  is calculated

Eventually, a graph between  $\frac{1}{x_D - x_w}$  and  $x_w$ is plotted from  $x_{w,\text{final}} = 0.045$  (4.5%) to  $x_F =$ 0.32 (32%), as shown on the next Page, and the **area under the curve** is found to be **0.608** 

Hence,

$$egin{aligned} W_{ ext{final}} &= F \expigl(- ext{area under the curve}igr) \ &= igl(50igr) \expigl(-0.608igr) \ &W_{ ext{final}} &= 27.21 \end{aligned}$$

and

$$D_{\rm total} = F - W_{\rm final} = 50 - 27.21 = 22.79$$



(from "Separation Process Engineering" by Wankat, 2007)

The value of  $x_{_{D,\mathrm{avg}}}$  can, thus, be calculated as follows

$$\begin{split} x_{D,\text{avg}} &= \frac{x_F F - x_{w,\text{final}} W_{\text{final}}}{D_{\text{total}}} \\ &= \frac{\left[ \left( 0.32 \right) \left( 50 \right) \right] - \left[ \left( 0.045 \right) \left( 27.21 \right) \right]}{\left( 22.79 \right)} \\ &x_{D,\text{avg}} = 0.648 \end{split}$$

# 7.4.2 Variable reflux ratio (Constant $x_{D}$ )

In this batch distillation mode, the distillation is carried out such that the value of  $x_D$  is fixed, while the reflux ratio  $\left(\frac{L}{D}\right)$  is varied

As the *reflux ratio* is *varied*, the *slope* of the *operating line* keeps changing as illustrated in Figure 7.4

Note that the point where the operating line intersects with the y = x line at  $x_D$  is fixed (as the value of  $x_D$  is kept constant)

Similar to the constant reflux ratio batch distillation (but not exactly the same), to solve this problem, we step off stages (for a given number of equilibrium stages) from the point where y = x $= x_D$  for each operating line, and the corresponding value of  $x_w$  is obtained; then, the graph bet-



Figure 7.4: The batch distillation with varying reflux ratio

(from "Separation Process Engineering" by Wankat, 2007)

### 7.5 Operating Time for Batch Distillation

The *overall* operating time for batch distillation includes the *operating* time and the *down* time:

$$t_{\text{batch}} = t_{\text{operating}} + t_{\text{down}}$$
 (7.32)

The *actual* operating time for batch distillation  $(t_{operating})$  can be computed using the following equation:

$$t_{\text{operating}} = \frac{D_{\text{total}}}{\dot{D}} \tag{7.33}$$

where  $\dot{D}$  = the flow rate of the distillate

The value of  $\dot{D}$  cannot be set arbitrarily (อย่างไรก็ได้ or ตามใจชอบ), as the column must be

designed to accommodate a limited amount of vapour flow rate  $(V_{\max})$ , to avoid the *flooding* phenomenon

The maximum distillate flow rate  $(D_{\max})$  can be computed as follows

$$\dot{D}_{\max} = \frac{V_{\max}}{1 + \frac{L}{D}} \tag{7.34}$$

Normally, the *optimal* or *operating* value of  $\dot{D}$  is  $0.75\dot{D}_{\rm max}$ 

The down time  $(t_{down})$  includes

- the time required for dumping (draining out) the remaining bottom product
- 2) the clean-up time (to clean up the column)

3) the *loading* time for the next batch4) the *heat-up* time until the reflux starts to appear

Note that ehe energy requirements for a condenser and a re-boiler can be calculated from the energy balance equations around the condenser and the whole system, respectively

If the *reflux* is a *saturated liquid*,

$$Q_{C} = -V_{1} \left( H_{1} - h_{D} \right) = -V_{1} \lambda \qquad (7.35)$$

where  $\lambda$  is the latent heat of vaporisation

The energy balance around the entire system yields the heating load  $\left(Q_R\right)$  as follows

$$Q_R = -Q_C + Dh_D \tag{7.36}$$