AE 335 Separation Processes

(by PTS)

Solutions to Problem Set 5 (Batch Distillation)

1. A simple batch distillation with a single equilibrium stage is employed to separate methanol from water. The feed charged to the still pot is 100 moles with 75 mol% of methanol. We desire a final bottom product concentration of 55 mol% methanol. Find the amount of the distillate collected, the amount of material remained in the still pot, and the average concentration of the distillate. The system's pressure is 1 atm; so, the equilibrium data of the methanol-water mixture given in Problem Set 1 can be used.

Equilibrium data of the methanol-water mixture are as summarised in the following Table:

Methanol liquid (mol%)	Methanol vapour (mol%)
(100 <i>x</i>)	(100 <i>y</i>)
0	0
2.0	13.4
4.0	23.0
6.0	30.4
8.0	36.5
10.0	41.8
15.0	51.7
20.0	57.9
30.0	66.5
40.0	72.9
50.0	77.9
60.0	82.5
70.0	87.0
80.0	91.5
90.0	95.8
95.0	97.9
100.0	100.0

The given data/information are as follows

- *F* = 100 kmol
- $X_F = 0.55$
- $X_{W, \text{ final}} = 0.75$

The amount of liquid remained in the still pot (W_{final}) can be computed using the Rayleigh equation:

$$W_{\text{final}} = F \exp\left(-\int_{x_{W,\text{ final}}}^{x_{F}} \frac{dx}{y-x}\right)$$

The term
$$\int_{x_{W, \text{ final}}}^{x_F} \frac{dx}{y-x}$$
 in this Question is, in fact, $\int_{0.55}^{0.75} \frac{dx}{y-x}$, which can be obtained by

determining the area under the curve of the plot between x and $\frac{1}{y-x}$ from x=0.55 to x=0.75, as summarised in the following Table:

X	у	1/(<i>y</i> – <i>x</i>)
0.50	0.779	1/(0.779 – 0.50) = 3.58
0.60	0.825	4.44
0.70	0.870	5.88
0.80	0.915	8.70

The area under the curve of the plot of $x vs \frac{1}{y-x}$ from x=0.55 to x=0.75 using the data in the Table above is found to be 1.056 (try drawing a graph and determining the area under the curve yourself)

Thus,

$$\mathcal{W}_{\text{final}} = F \exp\left(-\int_{x_{W,\text{ final}}}^{x_{F}} \frac{dx}{y-x}\right)$$
$$= (100) \exp\left(-\int_{0.55}^{0.75} \frac{dx}{y-x}\right)$$
$$= (100) \exp(-1.056)$$
$$\mathcal{W}_{\text{final}} = 34.8 \text{ kmol}$$

From the equation: $F = W_{\text{final}} + D_{\text{total}}$, we can calculate the value of the total amount of the distillate (D_{total}) as follows

$$D_{\text{total}} = F - W_{\text{final}} = 100 - 34.8 = 65.2 \text{ kmol}$$

The average concentration of the distillate $(x_{D, avg})$ can be computed as follows

$$x_{D, \text{avg}} = \frac{Fx_F - W_{\text{final}} x_{W, \text{final}}}{D_{\text{total}}} = \frac{(100) \left(\frac{75}{100}\right) - (34.8) \left(\frac{55}{100}\right)}{65.2} = 0.857$$

2. We wish to use a distillation system of a still pot plus a column with *one* equilibrium stage to separate a mixture of methanol and water. A total condenser is used. The feed is 1 kmol with 57 mol% methanol. The desired a final bottom product concentration is 15 mol% methanol.

The system's pressure is 101.3 kPa. The reflux is a saturated liquid, and $\frac{L}{D}$ is constant at 1.85. Find W_{final} , D_{total} , and $x_{D, \text{avg}}$.

The given data/information are as follows

- *F* = 1 kmol
- $X_F = 0.57$
- $X_{W, \text{ final}} = 0.15$

In this Question, the Rayleigh equation is written as follows

$$W_{\text{final}} = F \exp\left(-\int_{x_{W, \text{ final}}}^{x_{F}} \frac{dx_{W}}{x_{D} - x_{W}}\right)$$

To obtain the values of $\frac{1}{x_D - x_W}$ at various values of x_D and the corresponding x_W ,

we have to do the following:

- 1) Draw an operating line for the selected value of x_D
- 2) Step off stages from the point $y = x_D$ on the y = x line for a given number of stages
- 3) Determine the value of x_{W} from the graph
- 4) Calculate the value of $\frac{1}{x_D x_W}$

It is given that $\frac{L}{D} = 1.85$; thus,

$$\frac{L}{V} = \frac{\frac{L}{D}}{1 + \frac{L}{D}} = \frac{1.85}{1 + 1.85} = 0.65$$

and the operating line:

$$y = \frac{L}{V}x + \left(1 - \frac{L}{V}\right)x_{D}$$

for this Question can be written as follows

 $y = 0.65x + (1 - 0.65)x_D = 0.65x + 0.35x_D$

Since the system comprises a still pot and the column with 1 stage, the total number of stages (n) is 2

Hence, for each value of x_D , we draw the operating line, step off stages for 2 stages, and determine the value of x_W

The plot, as shown on the next Page, illustrates how to step off stages and determine the value of x_{μ} for the selected values of x_{ρ} of 0.70, 0.80, and 0.90

From the graph, we obtain the following

- For $x_D = 0.70$, $x_W = 0.12$
- For $x_D = 0.80$, $x_W = 0.25$
- For $x_D = 0.90$, $x_W = 0.57$

Additionally (but not on the graph), we also obtain

- For $x_D = 0.75$, $x_W = 0.19$
- For $x_D = 0.85$, $x_W = 0.39$

X_{Methanol}

(note that the slopes for all cases are constant)

Thus, the value of $\frac{1}{x_D - x_W}$ for each x_D and corresponding x_W can be summarised in the following the Table:

ХD	Xw	$1/(x_D - x_W)$
0.70	0.12	1/(0.70 - 0.12) = 1.72
0.75	0.19	1.79
0.80	0.25	1.82
0.85	0.39	2.17
0.90	0.57	3.03

The under the curve of the plot of x_W vs $\frac{1}{x_D - x_W}$ from $x_W = 0.15$ to $x_W = x_F = 0.57$ is found to be 0.926 (try drawing a graph and determining the area under the curve yourself)

Hence,

$$\mathcal{W}_{\text{final}} = F \exp\left(-\int_{x_{W,\text{ final}}}^{x_{F}} \frac{dx_{W}}{y-x}\right)$$
$$= (1) \exp\left(-\int_{0.15}^{0.57} \frac{dx_{W}}{x_{D}-x_{W}}\right)$$
$$= (100) \exp\left(-0.926\right)$$
$$\mathcal{W}_{\text{final}} = 0.396 \text{ kmol}$$

Then, we can calculate the value of D_{total} as follows $D_{total} = F - W_{final} = 1 - 0.396 = 0.604$ kmol The average concentration of the distillate $(x_{D, avg})$ can be computed as follows

$$X_{D, \text{avg}} = \frac{Fx_F - W_{\text{final}} X_{W, \text{final}}}{D_{\text{total}}} = \frac{\left(1\right) \left(\frac{57}{100}\right) - \left(0.396\right) \left(\frac{15}{100}\right)}{0.604} = 0.845$$

- 3. We wish to employ a normal batch distillation for the mixture of methanol and water. The system comprises a still pot and a column with 2 equilibrium stages. The column has a total condenser, and the reflux is a saturated liquid. The column is operating with a *varying* reflux ratio, but x_D is held *constant*. The initial feed charged into the still pot is 10 kmol with 40 mol% methanol. The desired final concentration in the still pot is 8 mol% methanol and the desired distillate concentration is 85 mol% methanol. The system's pressure is 1 atm, and CMO is valid.
 - 3.1) What initial external reflux ratio $\left(\frac{L}{D}\right)$ must be used?
 - 3.2) What final external reflux ratio must be used?
 - 3.3) How much distillate product is withdrawn, and what is the final amount of material left in the still pot?

The given data/information are as follows

- *F* = 10 kmol
- $X_F = 0.40$
- $X_{W, \text{ final}} = 0.08$
- $X_{D_i \text{ avg}} = 0.85$

In this Question, the value of x_D is fixed at 0.85, and the system is operated by changing the reflux ratio $\left(\frac{L}{D}\right)$

Hence, the slope of the operating line is NOT constant

To obtain the value of the *initial* external reflux ratio, we have to use a trial & error technique by

1) guessing the value of the reflux ratio $\left(\frac{L}{D}\right)$ and thus computing value of the

slope of the operating line $\left(\frac{L}{V}\right)$, or we can make a guess for the value of $\frac{L}{V}$ directly

- 2) drawing the operating line with the slope obtained from 1
- 3) trying stepping off stages from the point where $y = x_F$ on the y = x line to the point where $y = x_p$ on the y = x line
- 4) If the guessed slope (from 1) is correct, the stages must be equal to that specified by the problem
- 5) If NOT, or the guessed slope (from 1) does not give the number of stages equals that specified by the problem statement, we have to make a new guess

In this Question, **the total number of stages is 3** (a still pot with a column with 2 stages)

We start guessing the slope $\left(\frac{L}{V}\right)$ of 0.30; hence, the operating line is $y = \frac{L}{V}x + \left(1 - \frac{L}{V}\right)x_{D}$ = 0.30x + (1 - 0.30)(0.85) y = 0.30x + 0.595

(note that the value of x_D is fixed at 0.85 as specified in the problem statement)

Drawing the operating line from the equation: y = 0.30x + 0.595 on the McCabe-Thiele diagram and stepping off stages, from the point where $y = x_F = 0.40$ to the point where $y = x_D = 0.85$, yields the number of stages of ~4, which is **not 3**

So, we need a new guess

By doing trial & error to find the correct value of the slope, we found that the appropriate **slope** value that gives the number of stages of 3 is **~0.32** (try doing it yourself)

Since
$$\frac{L}{D} = \frac{\frac{L}{V}}{1 - \frac{L}{V}}$$
, the appropriate *initial* external reflux ratio is
 $\frac{L}{D} = \frac{0.32}{1 - 0.32} = 0.47$

For the *final* external reflux ratio, the procedure is still the same, but it starts from the point where $y = x_{W, \text{ final}}$ on the y = x line to the point where $y = x_D$ on the y = x line

Once again, we start guessing the slope $\left(\frac{L}{V}\right)$, but, this time, the guessed slope of

0.85; hence, the operating line is

$$y = \frac{L}{V}x + \left(1 - \frac{L}{V}\right)x_{D}$$

= 0.85x + (1 - 0.85)(0.85)
y = 0.85x + 0.1275
(note again that the value of x_D is fixed at 0.85)

Drawing the operating line from the equation above on the McCabe-Thiele diagram and stepping off stages, from the point where $y = x_{W, \text{ final}} = 0.08$ to the point where $y = x_D = 0.85$, yields the number of stages of ~3

So, the guessed slope (*i.e.* $\frac{L}{V} = 0.85$) seems to be correct

Thus, the *final* external reflux ratio is

$$\frac{L}{D} = \frac{\frac{L}{V}}{1 - \frac{L}{V}} = \frac{0.85}{1 - 0.85} = 5.67$$

Solving the overall and species balances simultaneously

$$D_{\text{total}} + W_{\text{final}} = F$$
$$D_{\text{total}} + W_{\text{final}} = 10$$

and

$$\begin{aligned} x_{D, \text{ avg}} D_{\text{total}} + x_{W, \text{ final}} W_{\text{final}} &= x_F F \\ (0.85) D_{\text{total}} + (0.08) W_{\text{final}} &= (0.40) (10) \end{aligned}$$

gives

$$W_{\text{final}} = 5.84 \text{ kmol}$$

 $D_{\text{total}} = 4.16 \text{ kmol}$

- 4. A mixture of 62 mol% methanol and the remaining water is distilled using a batch distillation. The batch distillation system comprises a still pot and a column with one equilibrium stage. The feed is 3 kmol. The system operates at the *constant* distillate concentration (x_D) of 85 mol% methanol. The desired final still pot concentration is 45 mol% methanol. The reflux is a saturated liquid. Assume that CMO is valid
 - 4.1) Find $D_{\scriptscriptstyle\rm total}$ and $W_{\scriptscriptstyle\rm final}$
 - 4.2) Find the final value of the external reflux ratio $\left(\frac{L}{D}\right)$

The given data/information are as follows

- F = 3 kmol
- $X_F = 0.62$
- $X_{W, \text{ final}} = 0.45$
- $X_{D_{i} \text{ avg}} = 0.85$

The procedure is similar to that in Question 3; so, try doing it yourself

The answers are:

- The *final* external reflux ratio is found to be ~0.93 (and the correct guessed slope of the operating line is ~0.48)
- $W_{\text{final}} = 1.725$ kmol and $D_{\text{total}} = 1.275$ kmol