AE 335 Separation Processes
 (by PTS)

Solutions to Problem Set 5

(Batch Distillation)

1. A simple batch distillation with a single equilibrium stage is employed to separate methanol from water. The feed charged to the still pot is 100 moles with $75 \mathrm{~mol} \%$ of methanol. We desire a final bottom product concentration of $55 \mathrm{~mol} \%$ methanol. Find the amount of the distillate collected, the amount of material remained in the still pot, and the average concentration of the distillate. The system's pressure is 1 atm ; so, the equilibrium data of the methanol-water mixture given in Problem Set 1 can be used.

Equilibrium data of the methanol-water mixture are as summarised in the following Table:

Methanol liquid (mol\%) (100x)	Methanol vapour (mol\%) $(\mathbf{1 0 0 y})$
0	0
2.0	13.4
4.0	23.0
6.0	30.4
8.0	36.5
10.0	41.8
15.0	51.7
20.0	57.9
30.0	66.5
40.0	72.9
50.0	77.9
60.0	82.5
70.0	87.0
80.0	91.5
90.0	95.8
95.0	97.9
100.0	100.0

The given data/information are as follows

- $F=100 \mathrm{kmol}$
- $\mathrm{X}_{\mathrm{F}}=0.55$
- $x_{w, \text { final }}=0.75$

The a mount of liquid remained in the still pot $\left(\mathrm{W}_{\text {final }}\right)$ can be computed using the Rayleigh equation:

$$
W_{\text {final }}=\operatorname{Fexp}\left(-\int_{x_{W} \text { fral }}^{x_{5}} \frac{d x}{y-x}\right)
$$

The term $\int_{x_{\text {w f f fnal }}}^{x_{5}} \frac{d x}{y-x}$ in this Question is, in fact, $\int_{0.55}^{0.75} \frac{d x}{y-x}$, which can be obtained by determining the area under the curve of the plot between x and $\frac{1}{y-x}$ from $x=0.55$ to $x=0.75$, as summa rised in the following Table:

\mathbf{x}	\mathbf{y}	$\mathbf{1} /(\mathbf{y}-\mathbf{x})$
0.50	0.779	$1 /(0.779-0.50)=3.58$
0.60	0.825	4.44
0.70	0.870	5.88
0.80	0.915	8.70

The area under the curve of the plot of x vs $\frac{1}{y-x}$ from $x=0.55$ to $x=0.75$ using the data in the Table above is found to be 1.056 (try drawing a graph and determining the area under the curve yourself)

Thus,

$$
\begin{aligned}
W_{\text {final }} & =F \exp \left(-\int_{x_{w, \text { frala }}}^{x_{f}} \frac{d x}{y-x}\right) \\
& =(100) \exp \left(-\int_{0.55}^{0.75} \frac{d x}{y-x}\right) \\
& =(100) \exp (-1.056) \\
& W_{\text {final }}=34.8 \mathrm{kmol}
\end{aligned}
$$

From the equation: $F=W_{\text {final }}+D_{\text {total }}$, we can calculate the value of the total a mount of the distillate $\left(D_{\text {total }}\right)$ asfollows

$$
D_{\text {total }}=F-W_{\text {final }}=100-34.8=65.2 \mathrm{kmol}
$$

The average concentration of the distillate ($\mathrm{x}_{\mathrm{D}, \mathrm{avg}}$) can be computed as follows

$$
x_{D, \text { avg }}=\frac{F x_{F}-W_{\text {final }} x_{W, \text { final }}}{D_{\text {total }}}=\frac{(100)\left(\frac{75}{100}\right)-(34.8)\left(\frac{55}{100}\right)}{65.2}=0.857
$$

2. We wish to use a distillation system of a still pot plus a column with one equilibrium stage to separate a mixture of methanol and water. A total condenser is used. The feed is 1 kmol with $57 \mathrm{~mol} \%$ methanol. The desired a final bottom product concentration is $15 \mathrm{~mol} \%$ methanol.

The system's pressure is 101.3 kPa . The reflux is a saturated liquid, and $\frac{L}{D}$ is constant at 1.85 . Find $W_{\text {final }}, D_{\text {total }}$, and $x_{D, \text { avg }}$.

The given data/information are asfollows

- $F=1 \mathrm{kmol}$
- $X_{F}=0.57$
- $x_{W, \text { final }}=0.15$

In this Question, the Rayleigh equation is written as follows

$$
\mathrm{W}_{\text {final }}=\mathrm{F} \exp \left(-\int_{x_{\mathrm{w}}, \text { frail }}^{x_{\mathrm{F}}} \frac{d x_{\mathrm{w}}}{x_{\mathrm{D}}-x_{\mathrm{w}}}\right)
$$

To obtain the values of $\frac{1}{x_{D}-x_{w}}$ at various values of x_{D} and the corresponding x_{w}, we have to do the following:

1) Draw an operating line for the selected value of x_{D}
2) Step off stages from the point $y=x_{D}$ on the $y=x$ line for a given number of stages
3) Determine the value of x_{w} from the graph
4) Calculate the value of $\frac{1}{x_{D}-x_{w}}$

It is given that $\frac{L}{D}=1.85$; thus,

$$
\frac{L}{V}=\frac{\frac{L}{D}}{1+\frac{L}{D}}=\frac{1.85}{1+1.85}=0.65
$$

and the operating line:

$$
y=\frac{L}{V} x+\left(1-\frac{L}{V}\right) x_{D}
$$

for this Question can be written asfollows

$$
y=0.65 x+(1-0.65) x_{D}=0.65 x+0.35 x_{D}
$$

Since the system comprises a still pot and the column with 1 stage, the total number of stages (n) is 2

Hence, foreach value of x_{D}, we draw the operating line, step off stages for 2 stages, and determine the value of x_{w}

The plot, as shown on the next Page, illustrates how to step off stages and detemine the value of x_{w} for the selected values of x_{D} of $0.70,0.80$, and 0.90

From the graph, we obta in the following

- For $x_{D}=0.70, x_{w}=0.12$
- For $x_{D}=0.80, x_{w}=0.25$
- For $x_{D}=0.90, x_{w}=0.57$

Additionally (but not on the graph), we also obta in

- For $x_{D}=0.75, x_{w}=0.19$
- For $x_{D}=0.85, x_{w}=0.39$

(note that the slopes for all cases a re constant)
Thus, the value of $\frac{1}{x_{D}-x_{w}}$ foreach x_{D} and corresponding x_{w} can be summarised in the following the Table:

$\mathbf{X}_{\mathbf{D}}$	$\mathbf{X}_{\mathbf{w}}$	$\mathbf{1} /\left(\mathbf{x}_{\mathbf{D}}-\mathbf{x}_{\mathbf{w}}\right)$
0.70	0.12	$1 /(0.70-0.12)=1.72$
0.75	0.19	1.79
0.80	0.25	1.82
0.85	0.39	2.17
0.90	0.57	3.03

The under the curve of the plot of x_{w} vs $\frac{1}{x_{D}-x_{w}}$ from $x_{w}=0.15$ to $x_{w}=x_{F}=0.57$ is found to be 0.926 (try drawing a graph and detemining the area under the curve yourself)

Hence,

$$
\begin{aligned}
W_{\text {final }} & =F \exp \left(-\int_{x_{\text {W. fnal }}}^{x_{F}} \frac{d x_{w}}{y-x}\right) \\
& =(1) \exp \left(-\int_{0.15}^{0.57} \frac{d x_{w}}{x_{D}-x_{w}}\right) \\
& =(100) \exp (-0.926) \\
& W_{\text {final }}=0.396 \mathrm{kmol}
\end{aligned}
$$

Then, we can calculate the value of $D_{\text {total }}$ as follows

$$
\mathrm{D}_{\text {total }}=\mathrm{F}-\mathrm{W}_{\text {final }}=1-0.396=0.604 \mathrm{kmol}
$$

The average concentration of the distillate ($\mathrm{x}_{\mathrm{D}, \mathrm{avg}}$) can be computed as follows

$$
X_{D, \text { avg }}=\frac{F X_{F}-W_{\text {final }} X_{W, \text { final }}}{D_{\text {total }}}=\frac{(1)\left(\frac{57}{100}\right)-(0.396)\left(\frac{15}{100}\right)}{0.604}=0.845
$$

3. We wish to employ a normal batch distillation for the mixture of methanol and water. The system comprises a still pot and a column with 2 equilibrium stages. The column has a total condenser, and the reflux is a saturated liquid. The column is operating with a varying reflux ratio, but x_{D} is held constant. The initial feed charged into the still pot is 10 kmol with 40 $\mathrm{mol} \%$ methanol. The desired final concentration in the still pot is $8 \mathrm{~mol} \%$ methanol and the desired distillate concentration is $85 \mathrm{~mol} \%$ methanol. The system's pressure is 1 atm , and CMO is valid.
3.1) What initial external reflux ratio $\left(\frac{L}{D}\right)$ must be used?
3.2) What final external reflux ratio must be used?
3.3) How much distillate product is withdrawn, and what is the final amount of material left in the still pot?

The given data/information are as follows

- $\mathrm{F}=10 \mathrm{kmol}$
- $X_{F}=0.40$
- $x_{w, \text { final }}=0.08$
- $X_{\mathrm{D}, \mathrm{avg}}=0.85$

In this Question, the value of x_{D} is fixed at 0.85 , and the system is operated by changing the reflux ratio $\left(\frac{L}{D}\right)$

Hence, the slope of the operating line is NOTc onstant
To obtain the value of the initial extemal reflux ratio, we have to use a trial \& error technique by

1) guessing the value of the reflux ratio $\left(\frac{L}{D}\right)$ and thus computing value of the slope of the operating line $\left(\frac{L}{V}\right)$, or we can make a guess for the value of $\frac{L}{V}$ directly
2) drawing the operating line with the slope obtained from 1
3) trying stepping off stages from the point where $y=x_{F}$ on the $y=x$ line to the point where $y=x_{D}$ on the $y=x$ line
4) If the guessed slope (from 1) is corect, the stages must be equal to that specified by the problem
5) If NOT, or the guessed slope (from 1) does not give the number of stages equals that specified by the problem statement, we have to make a new guess

In this Question, the total number of stages is $\mathbf{3}$ (a still pot with a column with 2 stages)

We start guessing the slope $\left(\frac{L}{V}\right)$ of 0.30 ; hence, the operating line is

$$
\begin{aligned}
& y= \frac{L}{V} x+\left(1-\frac{L}{V}\right) x_{D} \\
&=0.30 x+(1-0.30)(0.85) \\
& y=0.30 x+0.595
\end{aligned}
$$

(note that the value of x_{D} is fixed at 0.85 as specified in the problem statement)
Drawing the operating line from the equation: $y=0.30 x+0.595$ on the McCabeThiele diagram and stepping off stages, from the point where $y=x_{F}=0.40$ to the point where $y=x_{D}=0.85$, yields the number of stages of ~ 4, which is not 3

So, we need a new guess
By doing trial \& error to find the correct value of the slope, we found that the appropriate slope value that gives the number of stages of $\mathbf{3}$ is $\boldsymbol{\sim} \mathbf{0 . 3 2}$ (try doing it yourself)

Since $\frac{L}{D}=\frac{\frac{L}{V}}{1-\frac{L}{V}}$, the a ppropriate initial extemal reflux ratio is

$$
\frac{\mathrm{L}}{\mathrm{D}}=\frac{0.32}{1-0.32}=0.47
$$

For the final extemal reflux ratio, the procedure is still the same, but it starts from the point where $y=x_{w, ~ f i n a l ~}$ on the $y=x$ line to the point where $y=x_{D}$ on the $y=x$ line

Once again, we start guessing the slope $\left(\frac{L}{V}\right)$, but, this time, the guessed slope of 0.85 ; hence, the operating line is

$$
\begin{aligned}
y= & \frac{L}{V} x+\left(1-\frac{L}{V}\right) x_{D} \\
= & 0.85 x+(1-0.85)(0.85) \\
& y=0.85 x+0.1275
\end{aligned}
$$

(note again that the value of x_{D} is fixed at 0.85)

Drawing the operating line from the equation above on the McCabe-Thiele diagram and stepping off stages, from the point where $y=x_{w, \text { final }}=0.08$ to the point where $y=x_{D}=0.85$, yields the number of sta ges of ~ 3

So, the guessed slope (i.e. $\frac{L}{V}=0.85$) seems to be correct
Thus, the final extemal reflux ratio is

$$
\frac{L}{D}=\frac{\frac{L}{V}}{1-\frac{L}{V}}=\frac{0.85}{1-0.85}=5.67
$$

Solving the overall and spec ies balances simulta neously

$$
\begin{gathered}
D_{\text {total }}+W_{\text {final }}=\mathrm{F} \\
D_{\text {total }}+W_{\text {final }}=10
\end{gathered}
$$

and

$$
\begin{gathered}
x_{D, \text { avg }} D_{\text {total }}+x_{W, \text { final }} W_{\text {final }}=x_{F} F \\
(0.85) D_{\text {total }}+(0.08) W_{\text {final }}=(0.40)(10)
\end{gathered}
$$

gives

$$
\begin{aligned}
\mathrm{W}_{\text {tinal }} & =5.84 \mathrm{kmol} \\
\mathrm{D}_{\text {total }} & =4.16 \mathrm{kmol}
\end{aligned}
$$

4. A mixture of $62 \mathrm{~mol} \%$ methanol and the remaining water is distilled using a batch distillation. The batch distillation system comprises a still pot and a column with one equilibrium stage. The feed is 3 kmol . The system operates at the constant distillate concentration $\left(x_{D}\right)$ of 85 $\mathrm{mol} \%$ methanol. The desired final still pot concentration is $45 \mathrm{~mol} \%$ methanol. The reflux is a saturated liquid. Assume that CMO is valid
4.1) Find $D_{\text {total }}$ and $W_{\text {final }}$
4.2) Find the final value of the external reflux ratio $\left(\frac{L}{D}\right)$

The given data/information are as follows

- $F=3 \mathrm{kmol}$
- $X_{F}=0.62$
- $x_{w, \text { final }}=0.45$
- $\mathrm{X}_{\mathrm{D}, \mathrm{avg}}=0.85$

The procedure is similar to that in Question 3; so, try doing it yourself
The answers are:

- The final extemal reflux ratio is found to be ~ 0.93 (and the correct guessed slope of the operating line is ~ 0.48)
- $\mathrm{W}_{\text {final }}=1.725 \mathrm{kmol}$ and $\mathrm{D}_{\text {total }}=1.275 \mathrm{kmol}$

