AE 335 Separation Processes

(by PTS)

Solutions to Problem Set 6

(Absorption \& Stripping)

1. We are absorbing hydrogen sulphide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ in biogas at $15{ }^{\circ} \mathrm{C}$ into water. The entering water is pure. The feed gas contains 0.0012 mole fraction $\mathrm{H}_{2} \mathrm{~S}$ and the remaining CH_{4}, and we want to remove $97 \mathrm{~mol} \%$ of $\mathrm{H}_{2} \mathrm{~S}$ in biogas into water. The gas flow rate is $10 \mathrm{kmol} / \mathrm{h}$, while the liquid flow rate is $2,000 \mathrm{kmol} / \mathrm{h}$. Total pressure is 2.5 atm . The equilibrium data is

$$
\text { Partial pressure of } \mathrm{H}_{2} \mathrm{~S}(\mathrm{~atm})=\text { (Henry's constant) } x
$$

where Henry's constant of $\mathrm{H}_{2} \mathrm{~S}$ in water at $15{ }^{\circ} \mathrm{C}$ is $423 \mathrm{~atm} /($ mole fraction) and x is mole fraction of $\mathrm{H}_{2} \mathrm{~S}$.
1.1) Calculate the outlet gas and liquid mole fraction of $\mathrm{H}_{2} \mathrm{~S}$
1.2) Calculate the number of equilibrium stages required, using a McCabe-Thiele diagram
1.3) If actual $\frac{L}{V}=m\left(\frac{L}{V}\right)_{\min }$, find the value of m (a multiplier)

Note that, in this Question, since the concentration of the solute (i.e. $\mathrm{H}_{2} \mathrm{~S}$) is relatively low, it is reasonable to assume that the flow rate of the liquid and gas phases are constant, even though the solute is moving from the gasphase to the liquid phase, and by assuming such that, the mole fractions for the compositions in the gas and liquid phases (i.e. y and x) are used instead of Y and X, respectively

The schematic diagram of this absorption process is as shown below

From the given data/information, we obta in the following:

- $y_{\text {in }}=0.0012$
- $\mathrm{x}_{\mathrm{in}}=0$ (aspure water is used a sa solvent)
- G or $\mathrm{V}=10 \mathrm{kmol} / \mathrm{h}$
- $\mathrm{L}=2,000 \mathrm{kmol} / \mathrm{h}$
- The equilibrium equation is $y=\frac{423 x}{2.5}=169.2 x$

It is required that 97% of $\mathrm{H}_{2} \mathrm{~S}$ is removed; thus, the concentration of $\mathrm{H}_{2} \mathrm{~S}$ in the outlet stream is

$$
\mathrm{y}_{\text {out }}=(1-0.97)(0.0012)=0.000036
$$

By performing a species balance for $\mathrm{H}_{2} \mathrm{~S}$, we obtain

$$
\begin{gathered}
\mathrm{y}_{\text {in }} \mathrm{V}+\mathrm{x}_{\text {in }}(\mathrm{L})=\mathrm{y}_{\text {out }} \mathrm{V}+\mathrm{x}_{\text {out }} \mathrm{L} \\
0.0012(10)+0(2,000)=0.000036(10)+\mathrm{x}_{\text {out }}(2,000) \\
\mathrm{x}_{\text {out }}=5.82 \times 10^{-6} \text { or } 5.82 \mathrm{ppm}
\end{gathered}
$$

The operating line passes through two points, i.e. $\left(\mathrm{x}_{\text {out }}, \mathrm{y}_{\text {in }}\right)$ and $\left(\mathrm{x}_{\text {in }}, \mathrm{y}_{\text {out }}\right)$ or $\left(5.82 \times 10^{-6}, 0.0012\right)$ and ($0,0.000036$)

The equilibrium line can be drawn from the equilibrium equation: $y=169.2 x$
By drawing the operating line and the equilibrium line on the same McCabe-Thiele diagram, we can step off stages, which, in this Question, is found to be ~ 10.5 (note that for the absorption operation, the equilibrium line is under the operating line)

Try doing it yourself

To obtain the operating line with minimum slope orto obtain minimum $\frac{\mathrm{L}}{\mathrm{V}}$ or $\left(\frac{\mathrm{L}}{\mathrm{G}}\right)_{\min }$, we have to draw the line from the point $\left(\mathrm{X}_{\text {in }}, \mathrm{y}_{\text {out }}\right)$ or $(0,0.000036)$ until the line touches the equilibrium line at the point where $y=y_{\text {in }}=0.0012$

At the touching point, we obtain $x_{\text {out, } \min }=7.09 \times 10^{-6}$, and the slope of this line or $\left(\frac{L}{G}\right)_{\text {min }}$ can be computed as follows

$$
\text { slope }(\min)=\left(\frac{L}{G}\right)_{\min }=\frac{y_{\text {in }}-y_{\text {out }}}{x_{\text {out }_{\text {min }}}-x_{\text {in }}}=\frac{0.0012-0.000036}{7.09 \times 10^{-6}-0}=164.1
$$

The slope of the actual operating line or $\frac{\mathrm{L}}{\mathrm{G}}$, which passes through the points $\left(\mathrm{x}_{\text {out }}, \mathrm{y}_{\text {in }}\right)$ and $\left(\mathrm{x}_{\text {in }}, \mathrm{y}_{\text {out }}\right)$ or $\left(5.82 \times 10^{-6}, 0.0012\right)$ and $(0,0.000036)$, can be calculated as follows

$$
\text { slope }(\text { actual })=\left(\frac{\mathrm{L}}{\mathrm{G}}\right)_{\text {actual }}=\frac{\mathrm{y}_{\text {in }}-\mathrm{y}_{\text {out }}}{\mathrm{x}_{\text {out }}-\mathrm{x}_{\text {in }}}=\frac{0.0012-0.000036}{5.82 \times 10^{-6}-0}=200
$$

or it can altematively be computed as follows

$$
\operatorname{actual}\left(\frac{\mathrm{L}}{\mathrm{G}}\right)_{\text {actual }}=\frac{\text { Liquid flow rate }}{\text { Gasflow rate }}=\frac{2,000 \mathrm{kmol}}{10 \mathrm{kmol}}=200
$$

Hence, the value of multiplier (m) is

$$
m=\frac{\left(\frac{\mathrm{L}}{\mathrm{G}}\right)_{\text {actual }}}{\left(\frac{\mathrm{L}}{\mathrm{G}}\right)_{\min }}=\frac{200}{164}=1.22
$$

2. We wish to design a stripping column to remove carbon dioxide $\left(\mathrm{CO}_{2}\right)$ from water. This can be done by heating the water $+\mathrm{CO}_{2}$ mixture and passing it counter-currently with a nitrogen stream in a stripper. The operation is isothermal and isobaric at $60^{\circ} \mathrm{C}$ and 1 atm , respectively. The water contains 9.2×10^{-6} mole fraction CO_{2} and flows at $100,000 \mathrm{lb}_{\mathrm{m}} / \mathrm{h}$. Nitrogen enters the column as pure N_{2} and flows at $2,500 \mathrm{ft}^{3} / \mathrm{h}$. Nitrogen is also at 1 atm and $60^{\circ} \mathrm{C}$. We desire an outlet water concentration of 2×10^{-7} mole fraction CO_{2}. Assume that N_{2} is not dissolved in water and that water is not evaporated. The Henry's constant for CO_{2} in water at $60^{\circ} \mathrm{C}$ is $3,410 \mathrm{~atm} /($ mole fraction). Find the number of equilibrium stages required.

By using the equation of state for ideal gases:

$$
\mathrm{PV}=\mathrm{nRT}
$$

the volume of $1 \mathrm{lb}-\mathrm{mol}$ of N_{2} at 1 atm (or 14.7 psi) and $60^{\circ} \mathrm{C}$ ($140^{\circ} \mathrm{F}$ or $140+460=600^{\circ} \mathrm{R}$) can be calculated as $\sim 438 \mathrm{ft}^{3}$ (try computing this value yourself, using the gas constant, R, of $0.7302 \mathrm{ft}^{3} \cdot \mathrm{~atm} /{ }^{\circ} \mathrm{R} \cdot \mathrm{Ib}-\mathrm{mol}$ or $\left.10.732 \mathrm{ft}^{3} \cdot \mathrm{psi} /{ }^{\circ} \mathrm{R} \cdot \mathrm{Ib}-\mathrm{mol}\right)$

Hence, the molar flow rate of N_{2} for the volumetric flow rate of $2,500 \mathrm{ft} 3 / \mathrm{h}$ is

$$
\frac{2,500 \mathrm{ft}^{3} / \mathrm{h}}{438 \mathrm{ft}^{3} / \mathrm{lb}-\mathrm{mol}}=5.71 \mathrm{lb}-\mathrm{mol} / \mathrm{h}
$$

MW of water is $\sim 18 \mathrm{lb} / \mathrm{lb}-\mathrm{mol}$
Thus, the molar flow rate of water $\left(+\mathrm{CO}_{2}\right)$ for the mass flow rate of $100,000 \mathrm{lb} / \mathrm{h}$ is

$$
\frac{100,000}{18}=5,560 \mathrm{lb}-\mathrm{mol} / \mathrm{h}
$$

(Note that, even though water is NOTpure, but the amount of CO_{2} is extremely low, it is safe or reasonable to assume that the flow rate of the water $+\mathrm{CO}_{2}$ mixture is about the same as the flow rate of pure water)

Thus, the actual $\frac{L}{V}$ is

$$
\frac{5,560}{5.71}=973.7
$$

It is given, in the problem statement, that

- $x_{\text {in }}=9.2 \times 10^{-6}$
- $x_{\text {out }}=2 \times 10^{-7}$
- $\mathrm{y}_{\mathrm{in}}=0$ (as pure nitrogen, N_{2}, is used asa stripping gas)

Performing a species balance for CO_{2} gives

$$
\begin{gathered}
\mathrm{y}_{\text {out }} \mathrm{V}+\mathrm{x}_{\text {out }} \mathrm{L}=\mathrm{y}_{\text {in }} \mathrm{V}+\mathrm{x}_{\text {in }} \mathrm{L} \\
\mathrm{y}_{\text {out }}(5.72)+\left(2 \times 10^{-7}\right)(5,560)=(0)(5.72)+\left(9.2 \times 10^{-6}\right)(5,560) \\
\mathrm{y}_{\text {out }} \approx 0.00875
\end{gathered}
$$

The operating line passesthrough two points: $\left(\mathrm{x}_{\text {out }}, \mathrm{y}_{\text {in }}\right)$ and $\left(\mathrm{x}_{\text {in }}, \mathrm{y}_{\text {out }}\right)$ or $\left(2 \times 10^{-7}, 0\right)$ and $\left(9.2 \times 10^{-6}, 0.00875\right)$

The equilibrium line can be drawn from the equilibrium equation as follows:

$$
y=\frac{3,410 x}{1}=3,410 x
$$

By drawing the operating line and the equilibrium line on the same McCabe-Thiele diagram, we can step off stages, which, in this Question, is found to be ~ 3 (note, since this is the stripping operation, the equilibrium line is above the operating line)
3. A stripping tower with 4 equilibrium stages is being used to remove ammonia from waste water using air as the stripping gas. The operation is at $80^{\circ} \mathrm{F}$ and 1 atm . The inlet air is pure air, and the inlet waste water contains 0.02 mole fraction ammonia. The column operates at L / V of 0.65 . The equilibrium data in mole fraction is given as $y=1.414 x$. Find the outlet concentrations.

It is given that:

- $\mathrm{N}=4$
- $m=1.414$
- $\frac{\mathrm{L}}{\mathrm{V}}=0.65$
- $y_{\text {in }}=0$ (as pure a ir is used as a stripping gas) - note that $y_{\text {in }}=y_{N_{+1}}$
- $y_{\text {out }}^{*}=m x_{\text {in }}: y_{\text {out }}^{*}=(1.414)(0.02)=0.02828$
(this is because, at equilibrium, the liquid phase that goes in is in equilibrium with the gasphase that goes out - note that $y_{\text {out }}^{*}=y_{1}^{*}$ and $x_{\text {in }}=x_{0}$)

Actually, this Question can be solved in the same manner as Question 2, but, in this Question, a Kremser equation is employed to solve for the outlet concentration of the liquid phase ($\mathrm{x}_{\text {out }}$), in orderto illustrate how Kremser equation can be used to solve this kind of problem

Since the given data are for the concentrations in the gas phase, y , the following Kremser equation is chosen:

$$
\frac{y_{\text {out }}-y_{\text {out }}^{*}}{y_{\text {in }}-y_{\text {out }}^{*}}=\frac{1-\frac{L}{m V}}{1-\left(\frac{L}{m V}\right)^{N+1}}
$$

Substituting given corresponding numeric al values into the above Kremserequation and solving for $y_{\text {out }}$ yields $y_{\text {out }}=0.0127$

It is noteworthy that, for the stripping operation in this Question, for the same $x_{\text {in }}$ $(=0.02)$, the value of $y_{\text {out }}^{*}$ (from the equilibrium line/equation $=0.02828$) is higher than the value of $y_{\text {out }}$ (from the operating line/equation $=0.0127$)] - this confirms that, for the stripping operation, the equilibrium line is above the operating line

Performing a species balance for ammonia yields

$$
\begin{gathered}
\mathrm{y}_{\text {out }} \mathrm{V}+\mathrm{x}_{\text {out }} \mathrm{L}=\mathrm{y}_{\text {in }} \mathrm{V}+\mathrm{x}_{\text {in }} \mathrm{L} \\
(0.0127) \mathrm{L}+\mathrm{x}_{\text {out }} \mathrm{V}=(0) \mathrm{V}+(0.02) \mathrm{L} \\
\mathrm{x}_{\text {out }}=(0.0127) \frac{\mathrm{L}}{\mathrm{~V}}+(0) \frac{\mathrm{L}}{\mathrm{~V}}+(0.02)=4.93 \times 10^{-4}
\end{gathered}
$$

4. An absorption column for laboratory use has been carefully constructed so that it has exactly 4 equilibrium stages and is being used to measure equilibrium data. Water is used as the solvent to absorb ammonia from air. The system operates isothermally at $80^{\circ} \mathrm{F}$ and isobarically at 1 atm. The inlet water is pure distilled water. The ratio of L / V is 1.2 , the inlet gas concentration is 0.01 mole fraction ammonia, and the measured outlet gas concentration is 0.0027 mole fraction ammonia. Assuming the equilibrium is of the equation $y=m x$, determine the value of m.

It is given that

- $N=4$
- $\frac{\mathrm{L}}{\mathrm{V}}=1.2$
- $\mathrm{y}_{\mathrm{N}+1}=0.01$
- $y_{1}=0.0027$
- $\mathrm{x}_{0}=0$ (as pure distilled water is used as a solvent); thus,

$$
y_{1}^{*}=m x_{0}: y_{1}^{*}=m(0)=0
$$

In this Question, since we cannot draw an equilibrium line [because we have not known the value of m (orthe slope of the equilibrium line) yet], it would be more convenient to use a Kremser equation solve this question - i.e. to solve for the value of m (note that, since the given data are for the compositions of gas phase, y, the following Kremser equation is chosen):

$$
\frac{y_{1}-y_{1}^{*}}{y_{N+1}-y_{1}^{*}}=\frac{1-\frac{\mathrm{L}}{\mathrm{mV}}}{1-\left(\frac{\mathrm{L}}{\mathrm{mV}}\right)^{\mathrm{N}+1}}
$$

Substituting corresponding given numeric al values into the above Kremser equation (note that, $\mathrm{x}_{\mathrm{o}}=\mathrm{x}_{\text {in }}, \mathrm{y}_{1}=\mathrm{y}_{\text {out }}, \mathrm{y}_{\mathrm{N}+1}=\mathrm{y}_{\text {in }}$, and $\mathrm{y}_{1}^{*}=\mathrm{y}_{\text {out }}^{*}$, which can be computed from the equation: $y_{1}^{*}=m x_{0}$)
gives

$$
\frac{0.0027-0}{0.01-0}=\frac{1-\frac{1.2}{m}}{1-\left(\frac{1.2}{m}\right)^{4+1}}
$$

Solving form yields

$$
m \approx 1.415
$$

5. We wish to strip CO_{2} out of water at $20^{\circ} \mathrm{C}$ and 2 atm using a staged, counter-current stripper. The liquid flow rate is $100 \mathrm{kmol} / \mathrm{h}$ of water, and the initial CO_{2} mole fraction in water is 0.00005 . The inlet air stream contains no CO_{2}. It is desired to obtain 98.4% removal of CO_{2} from water. The Henry's constant for CO_{2} in water at $20^{\circ} \mathrm{C}$ is $1,420 \mathrm{~atm}$.
5.1) Find the outlet CO_{2} mole fraction in water
5.2) Find $V_{\text {min }}$
5.3) If there are 7 equilibrium stages, find V and the outlet mole fraction CO_{2} in water

From the given data, the equilibrium equation for this Question is

$$
y=\frac{1,420 x}{2}=710 x
$$

It is required that 98.4% of CO_{2} be removed, and the initial concentration of CO_{2} is 0.00005

Thus, the outlet concentration of CO_{2} in water is

$$
(1-0.984)(0.00005)=8 \times 10^{-7}
$$

Draw the equilibrium line from the equilibrium equation (i.e. $y=710 x$) on the McCabe-Thiele diagram

Since the operating line must pass through the $\left(\mathrm{x}_{\text {out }}, \mathrm{y}_{\text {in }}\right)$ point, the maximum slope of the operating line or $\left(\frac{L}{V}\right)_{\max }$ can be obtained by drawing the line from the point $\left(\mathrm{x}_{\text {out }}, \mathrm{y}_{\text {in }}\right)=\left(8 \times 10^{-7}, 0\right)$ until it touchesthe equilibrium line at the point where $\mathrm{x}=\mathrm{x}_{\text {in }}=$ 0.00005 (note that $y_{\text {in }}=0$ as the inlet air, a stripping gas, contains no CO_{2}, a solute)

Try drawing the equilibrium line and the maximum operating line yourself

At the touching point, the value of $y=y_{\text {out, } \max }=0.0355$
Then, the maximum slope or $\left(\frac{\mathrm{L}}{\mathrm{V}}\right)_{\max }$ of this system can then be computed as follows

$$
\left(\frac{L}{V}\right)_{\max }=\frac{y_{\text {in }}-y_{\text {out }_{\text {max }}}}{x_{\text {out }}-x_{\text {in }}}=\frac{0-0.0355}{8 \times 10^{-7}-0.00005}=721.5
$$

For $L=100 \mathrm{kmol} / \mathrm{h}$, the value of $\mathrm{V}_{\text {min }}$ can be calculated asfollows

$$
\begin{gathered}
\left(\frac{\mathrm{L}}{\mathrm{~V}}\right)_{\max }=721.5 \\
\mathrm{~V}_{\min }=\frac{\mathrm{L}}{\left(\frac{\mathrm{~L}}{\mathrm{~V}}\right)_{\max }}=\frac{100}{721.5}=0.14 \mathrm{kmol} / \mathrm{h}
\end{gathered}
$$

To solve for Question 5.3, several operating lines must be drawn until we obtain the operating line that enablesthe column to have 7 stages and the final stage that passes through the point where $x=x_{\text {in }}=0.00005$

Try doing it yourself

The actual $\mathrm{y}_{\text {out }}$ is found to be 0.0224 , and the actual $\frac{\mathrm{L}}{\mathrm{V}}$ can be computed as follows

$$
\left(\frac{L}{V}\right)_{\text {actual }}=\frac{y_{\text {in }}-y_{\text {out }}}{x_{\text {out }}-x_{\text {in }}}=\frac{0-0.0224}{8 \times 10^{-7}-0.00005}=455.3
$$

The value of actual \mathbf{V} can, then, be computed asfollows

$$
\mathrm{V}_{\text {actual }}=\frac{\mathrm{L}}{\left(\frac{\mathrm{~L}}{\mathrm{~V}}\right)_{\text {actual }}}=\frac{100}{455.3}=0.22 \mathrm{kmol} / \mathrm{h}
$$

6. We wish to absorb ammonia from air into water. The equilibrium data is given as $y=1.414 x$ in mole fraction. The counter-current column has 3 equilibrium stages. The entering air stream has a total flow rate of $10 \mathrm{kmol} / \mathrm{h}$ and is with 0.0083 mole fraction NH_{3}. The inlet water stream contains 0.0002 mole fraction NH_{3}. We desire an outlet gas concentration of 0.0005 mole fraction NH_{3}. Find the required liquid flow rate, L.

By using the following Kremser equation:

$$
\frac{y_{N+1}-y_{1}^{*}}{y_{1}-y_{1}^{*}}=\frac{1-\left(\frac{L}{m V}\right)^{N+1}}{1-\frac{L}{m V}}
$$

for the following given data:

- $\mathrm{N}=3$
- $\mathrm{y}_{\mathrm{N}+1}=0.0083$
- $y_{1}=0.0005$
- $x_{0}=0.0002 ;$ thus, $y_{1}^{*}=m x_{0}: y_{1}^{*}=1.414(0.0002)=0.0002828$
results in

$$
\frac{0.0083-0.0002828}{0.0005-0.0002828}=\frac{1-\left(\frac{\mathrm{L}}{\mathrm{mV}}\right)^{3+1}}{1-\frac{\mathrm{L}}{\mathrm{mV}}}
$$

Solving for $\frac{\mathrm{L}}{\mathrm{mV}}$ (by trial \& error - until we obtain the value of $\frac{\mathrm{L}}{\mathrm{mV}}$ that makes both sides of equation equal to each other) gives

$$
\frac{\mathrm{L}}{\mathrm{mV}}=2.91
$$

Thus,

$$
\mathrm{L}=2.91 \mathrm{mV}=2.91 \times 1.414 \times 10=41.1 \mathrm{kmol} / \mathrm{h}
$$

